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Cross-Domain Image Manipulation: Motivation

[General Ulysses S. Grant, 1864]

[Lenin and Trotsky during Red Square Demonstration, 1919]
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Cross-Domain Image Manipulation: Motivation

collections of hand-crafted 
manipulations

parametric models (e.g. face 3DMM)

[1] “3D Morphable Face Models - Past, Present and Future”, Egger et. al, 2019
[2] “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, Choi et. al, 2018

supervised neural models
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Cross-Domain Image Manipulation: Motivation



precise control over all attributes!

Cross-Domain Image Manipulation: Motivation

[0.3, 0.1, …]

[0.7, 0.2, …]

[0.1, 0.9, …]



T(x)

  (                ,              )
find T that minimizes
distinguishability

T(A) B

Solution: Unsupervised Image Translation / Domain Alignment
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  (                ,              )
find T that minimizes
distinguishability

T(A) B
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Solution: Unsupervised Image Translation / Domain Alignment

MMD, EMD, CORAL , etc.
✓easy to optimize

✗work poorly in higher dims

neural adversarial
✓expressive

✗unstable training



easy to optimize:
MMD, EMD, CORAL , etc.

  (                ,              )
find T that minimizes
distinguishability

T(A) B
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Solution: Unsupervised Image Translation / Domain Alignment

expressive:
neural adversarialTopic 1: Stable and expressive 

distribution alignment.



Domain Alignment: Synthetic-to-Real

Syn2Real

Real2Syn
in the synthetic 

domain

Real2Syn

Syn2Real

no precise control over attributes!

manipulate mouth



Domain Alignment: Synthetic-to-Real

Syn2Real

Real2Syn
in the synthetic 

domain

Real2Syn

Syn2Real

precise control over all attributes!
no precise control over attributes!

manipulate mouthTopic 2: Precise manipulation of real 
data using synthetic supervision.



??

synthetic supervision

mouth

orientation

…

factors of variation 
in source and target domains

Domain Alignment: Domain-specific factors

hair
color



??

synthetic supervision

mouth

orientation

…

factors of variation 
in source and target domains

Domain Alignment: Domain-specific factors

hair
color

Topic 3: Disentanglement and manipulation 
of domain-specific and shared factors 

in isolation without supervision.



Source Distribution Target Distribution

ground truth 1-to-1 cross-domain mapping

F

P
A

P
B

Task
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Source Samples Target Samples

Task

Goal:
reconstruct F from 
unpaired samples
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F
✓is a dog
✓same coat color
✓same pose
   ...

Source Samples (Cats) Target Samples (Dogs)

Task
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d(             ) 

How to find a good F?

(An empirical estimate of) 
a statistical distance
d(A, B): Set, Set ⇾ ℝ

d(             ) >

Example: difference of means

d(             ) = d(             ) 

“looks like A and B are 
coming from different 

distributions”

“looks like A and B 
might be coming from 
the same distribution”

“look same to me”



Source Samples Target Samples

How to find a good F?

A = {a
i
}

F

B = {b
j
}

Translated Source Samples

F(A) = {F(a
i
) : a

i 
∈ A}

minimize
statistical
distance 
d(F(A), B)

17



Source Samples Target Samples

How to find a good F? - what we expect

F
t=0

Translated Source Samples

HIGH
statistical
distance
d(F(A), B)

LOW
statistical
distance
d(F(A), B)

F
t=T

… optimizing F ...

18



Source Samples Target Samples

What could go wrong? 
Simple parametric models are “too weak”

A = {a
i
} B = {b

i
}

Translated Source Samples

F(A) = {F(a
i
) : a

i 
∈ A}

LOW
statistical
distanceF

t=0

19



What could go wrong? 
Non-parametric models (MMD, EMD) “do not generalize” well

AS HIGH AS 
JUST NOISE
statistical
distance

F

LOW
statistical
distance
d(F(A), B)

20

pairwise distances



21

B

T(A)

This problem is min-max!
Solving min-max with 1st order methods is hard!

Domain 
Classifier

What could go wrong? 
Adversarial alignment (GANs) are unstable and fail silently

Domain 
Classifier



Non-parametric
(MMD, EMD)

closed-form 
estimators exists

can be minimized 
via gradient descent

model-free
(metric-based)

Simple Parametric
(CORAL)

closed-form 
estimators exists

can be minimized 
via gradient descent

simple data model
(e.g. normal)

Adversarial (GAN, 
Monge–Kantorovich )

min-max objective

powerful implicit 
data model (NN)

adversarial training

Bounding Likelihood Ratios with Normalizing Flows: Motivation

22



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)

?⇒ ⇒
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Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Non-parametric
(MMD, EMD)

closed-form 
estimators exists

can be minimized 
via gradient descent

model-free
(metric-based)

Simple Parametric
(CORAL)

closed-form 
estimators exists

can be minimized 
via gradient descent

simple data model
(e.g. normal)

Adversarial (GAN, 
Monge–Kantorovich )

min-max objective

powerful implicit 
data model (NN)

adversarial training

min-min objective

gradient descent

Stable Alignment using Dual Adversarial Distance: Motivation

Objective Dualization

24
“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18)



Stable Alignment using Dual Adversarial Distance: Our Solution

Adversarial alignment loss for the logistic discriminator: 

Contribution: an equivalent dual adversarial alignment loss for the logistic D(x).

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18) 25



Stable Alignment using Dual Adversarial Distance: Our Solution

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18)



Linear min-max

Stable Alignment using Dual Adversarial Distance: Experiments

Linear dual

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18) 27



Stable Alignment using Dual Adversarial Distance: Experiments

Kernel dual

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18) 28



Non-parametric
(MMD, EMD)

closed-form 
estimators exists

can be minimized 
via gradient descent

model-free
(metric-based)

Simple Parametric
(CORAL)

closed-form 
estimators exists

can be minimized 
via gradient descent

simple data model
(e.g. normal)

Adversarial (GAN, 
Monge–Kantorovich )

min-max objective

powerful implicit 
data model (NN)

adversarial training

min-min objective

gradient descent

Stable Alignment using Dual Adversarial Distance: Takeaway

again, relatively 
simple data model

Dual Adversarial 
Distance

29



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)

?⇒ ⇒

u
n

iq
u

e
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u

e sh
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ed

Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Non-parametric
(MMD, EMD)

closed-form 
estimators exists

can be minimized 
via gradient descent

model-free
(metric-based)

Simple Parametric
(CORAL)

closed-form 
estimators exists

can be minimized 
via gradient descent

simple data model
(e.g. normal)

Adversarial (GAN, 
Monge–Kantorovich )

min-max objective

powerful implicit 
data model (NN)

adversarial training

Bounding Likelihood Ratios with Normalizing Flows: Motivation

31

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)

Log-Likelihood Ratio 
Minimizing Flows (new!)

closed-form 
upper bound

can be minimized 
via gradient descent

any tractable density
+ normalizing flow



A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Goal: 
find T such that T(A) and B are indistinguishable for M.

32

Parametric Density 
Family M

T(A) 

T(x)
Gaussian

“look same to me”

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

We start with two dataset A and B that we want to align. 
We assume that we fitted two separate density models

with parameters θA and θB to each dataset individually.

33

∫ = 1

Parametric Density 
Family M

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T

T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Then we introduce the “transformed” distribution T(A) 
and fit a density model to it.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)
34

Parametric Density 
Family M



T

T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Then we introduce the “shared” density model S
fit to the “combined” dataset T(A) U B.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)
35

Parametric Density 
Family M



T

T(A) U B T(A) A B 

Observation 1 (⇒ Lemma 2.1): 
The likelihood of the “shared” model (S) trained on the “combined” 

dataset is always lower than likelihoods of “private” models trained on 
each dataset alone (T(A), B), unless both datasets are from the same 

distribution.

Bounding Likelihood Ratios with Normalizing Flows: Method

36

Parametric Density 
Family M

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T

A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Observation 1 (⇒ Lemma 2.1): 
The likelihood of the “shared” model (S) trained on the “combined” 

dataset is always lower than likelihoods of “private” models trained on 
each dataset alone (T(A), B), unless both datasets are from the same 

distribution.

T(A) U B T(A) 

37

Parametric Density 
Family M

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T

T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Definition 1 (Likelihood-Ratio Distance): 
LR-distance between T(A) and B equals the difference between 

log-likelihoods of the optimal “shared” density S fit to the combined 
T(A) U B and two optimal “private” densities fit to T(A) and B 

independently.

LRD

38
“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



Bounding Likelihood Ratios with Normalizing Flows: Background

Y = T(X) = X + 3P
X

P
Y

Y = T(X) = X/2 + 3P
X

P
Y

·½ 

·2

·T’(x)

Y = T(X)P
X

P
Y

·(T’(x))-1

Normalizing flows:
- efficiently invertible
- efficient computation of 
det Jac[T](x)

⇒ can apply change of 
variables formula efficiently!

= change of variables

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T

T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Observation 2 (⇒ Lemma 2.2): 
The optimal likelihood of the transformed dataset T(A) can be 

approximated
in closed-form if T(x) is a normalizing flow.

40
“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T

T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Conclusion (⇒ Theorem 2.3):
We can find the optimal flow T* that minimizes the adversarial LR-distance 

(the “gap” between shared private likelihoods) by minimizing a 
non-adversarial LRMF:

41



Bounding Likelihood Ratios with Normalizing Flows: Method

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



Bounding Likelihood Ratios with Normalizing Flows: Method

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

Conclusion (⇒ Theorem 2.3):
We can find the optimal flow T* that minimizes the adversarial LR-distance 

(the “gap” between shared private likelihoods) by minimizing a 
non-adversarial LRMF:

44



MMD EMD [12]
 F○G-1 LRMF 

(ours)

T(A), B

manifold 
structure

top / bottom
classes

top / bottom
classifier 
accuracy

loss

GT

[12] baseline inspired by “AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows” by Grover et al. 

45



Bounding Likelihood Ratios with Normalizing Flows: 
Special Cases

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)

Special cases: 
1. Gaussian LRMF ⇔ matching mean and variance.

46

2. Minimizing an infinite capacity LRMF loss ⇔ minimizing JSD

3. Minimizing LRMF ⇔ training a GAN with a particular discriminator 
class



T

T(A) U B T(A) A B 

Bounding Likelihood Ratios with Normalizing Flows: Method

47

The Optimal Bayes Classifier D*(x) is defined in closed form

D*(x)

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)



in pixel space (GLOW):

LRMF T(A)
in emb space of VAEGAN:

Explicit failure signal:
final LRMF loss ≠ 0

DATA
MNIST (B):

USPS (A):

[12] baseline inspired by “AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows” by Grover et al. 



Bounding Likelihood Ratios with Normalizing Flows: 
Limitations

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurIPS’20)

Gradients of LRMF (wrt the transformation) between two-gaussian 
mixtures vanish as distribution means become further away from each 

other.

If A and B are far apart, a shift T(x; b) does 
not affect the likelihood of T(A) or S, 

so the LRMF objective is locally constant 
w.r.t. the transformation parameter b. Probabilities did not 

change!

Mixtures of two 
Gaussians



Non-parametric
(MMD, EMD)

model-free
(metric-based)

Simple Parametric
(CORAL)

simple data model
(e.g. normal)

Adversarial (GAN, 
Monge–Kantorovich )

powerful implicit 
data model (NN)

Log-Likelihood Ratio 
Minimizing Flows

any tractable density
+ normalizing flow

stable minimization stable minimization unstable min-max stable minimization

Bounding Likelihood Ratios with Normalizing Flows: Takeaway

no mode collapse no mode collapse mode collapse no mode collapse

stable gradients stable gradients vanishing generator 
gradients

vanishing generator 
gradients



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)
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Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Disclaimer

I am the second author, and my contribution is limited mostly to technical help: 

“Adversarial Self-Defense for Cycle-Consistent GANs”, 

Bashkirova, Usman, Saenko (NeurIPS’19)

I include this paper in this presentation, because the method proposed in this paper is 

essential to two remaining papers I talk about in this presentation.



What could go wrong? 
The found mapping might be nonsensical

LOW
statistical
distance

F
t=T

NO SEMANTIC 
CORRESPONDENCE

53



“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, Zhu et. al., ICCV2017

Cycle Reconstruction Improves Semantic Consistency



Improving Semantic Consistency with Translation Honesty

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

CycleGAN
UNIT
…

RGB Segmentation



Improving Semantic Consistency with Translation Honesty

Observation: CycleGAN 
reconstructs input images 
perfectly by cheating - it 

embedded structured noise into 
generated translations.

Solution: we propose defence 
techniques that prevent this 

“cheating”, and, consequently, 
improve the semantic 

consistency of outputs.

56“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)
“CycleGAN, a Master of Steganography”, Chu et al, NeurIPS’17 Workshop



Improving Semantic Consistency with Translation Honesty

GA2B
since we know that the network
G

A2B
 adds adversarial noise

a b’
 
= G

A2B
(a)

GA2BGB2A

the cycle-reconstruction b
cyc

 
will also have embedded 
adversarial noise!

b
cyc 

= G
A2B

(G
B2A

(b))a’
 
= G

B2A
(b)b

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

GB2A



Improving Semantic Consistency with Translation Honesty

GA2BGB2A

b
cyc 

= G
A2B

(G
B2A

(b))a’
 
= G

B2A
(b)b

- “the first image is the original, 
the second is a cycle reconstruction”

- “the first image is a cycle reconstruction, 
the second is the original”

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

Dnoise

Dnoise

= 0

= 1

Dnoise

Dnoise

= 0

= 1

…

Use the adversarial noise detector 
to penalize the model!



Improving Semantic Consistency with Translation Honesty

Reconstruction honesty - how much the performance decreases if we quantize segmentations?

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

Sensitivity to noise - how much the output changes if we add noise?

Pix2Pix IoU - do generated images produce 
same segmentation maps as the original?

pix2pix

a

b
IoU



Improving Semantic Consistency with Translation Honesty

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)



Improving Semantic Consistency with Translation Honesty

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)



Improving Semantic Consistency with Translation Honesty: 
Takeaway

Cycle-consistent models hide information 
in the form of adversarial noise. 

If we prevent them from doing this, 
the semantic consistency of the alignment 

improves.



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)
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Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Learning from Cross-Domain Demonstrations: Task

64“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)



mouth rest

original

manipulated

Learning from Cross-Domain Demonstrations: Demo

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19) 65



light rest

Learning from Cross-Domain Demonstrations: Demo

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)



angle rest

Learning from Cross-Domain Demonstrations: Demo

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)



https://docs.google.com/file/d/1t6QFkqWAS6RcFhB_ac5I6YoTbbR8SdFC/preview


disentangled              embeddings

all other
attributes mouth

E E

mouth all other
attributes

GA

Our goal is to train a model that splits the 
embedding into two parts:

- one to represent the attribute we 
manipulate (mouth), 

- the other to represent all other 
attributes (hair, mic, etc).

PuppetGAN: Method

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

real 
decoder shared 

encoder

69



We used autoencoder 
and cycle losses on both domains.

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

real 
decoder

synthetic 
decoder

shared 
encoder

PuppetGAN: Method

70



And GAN losses on all outputs.          ….

GAN GAN

real 
decoder

synthetic 
decoder

shared 
encoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

PuppetGAN: Method

71



We used supervised losses 
on synthetic data.

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

real 
decoder

synthetic 
decoder

shared 
encoder

PuppetGAN: Method

72

mouth rest



73

Problem:
The real decoder might ignore one input.

real 
decoder

synthetic 
decoder

shared 
encoder

PuppetGAN: Method



We used compositional constraint losses
to ensure that all embeddings are used.

any

real 
decoder

synthetic 
decoder

shared 
encoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

PuppetGAN: Method

74

any



“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

PuppetGAN: Comparing to related work



PuppetGAN: Comparing to related work

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)



PuppetGAN: Takeaway

We can manipulate specific attributes of 
real images using supervision from crude 

synthetic simulations!



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)
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Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Disentangling Domain-Specific and Domain-Invariant Factors of Variation

⇒

?⇒

Preserve as much 
as possible

⇒

⇒ ⇒

1-to-1 alignment problem 
is not well defined!

many-to-many alignment problem is well defined!



source (brunet males) target (females)

⇒

(target-specific)
hair color

(shared)
skin tone, pose,

background color

(source-specific)
mustache

Goal 2: translate a source image to the target domain guided by a target example

Goal 1: learn which factors of variation are shared vs domain-specific from data

source target

⇒

(target-specific)
rotation and size

(shared)
object color,

shape

(source-specific)
floor, wall colors

shared 
from 

source

specific
from 
guide

⇒
(ours)StarGANv2

shared 
from 

source

specific
from 
guide

⇒
(ours)MUNIT

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)

Disentangling Domain-Specific and Domain-Invariant Factors of Variation



gu
id

e
so

urc
e

RIFT
 (o

ur)

St
arG

ANv2

M
UNIT

DID
D

DRIT
++

AugC
yc

le
GAN

GT

“Evaluation of Correctness in Unsupervised Many-to-Many Image Translation” by Bashkirova, Usman, Saenko (WACV22)
“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)

shared: object color, shape
source: floor, wall color
target:  size, orientation

Domain A

Domain B

Disentangling Domain-Specific and Domain-Invariant Factors of Variation



“Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization” by Huang et al., ICCV’17

Disentangling Domain-Specific and Domain-Invariant Factors of Variation



orientation,
background

Capacity
Penalty

Cycle
Loss

emb

mustache

emb

hair color

source domain: 
brunet males

guide: female

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)
“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

Realism Loss

Honesty Loss

RIFT: Translation via Restricted Information Flow



s(a)
mustache

a

orientation,
background

b  a’ = G(b, s(a) + ε)

εL2

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)

Capacity Loss

σ

L

Corollary:
L ⇾ ∞  ⇒  MI ⇾ ∞
σ ⇾ 0  ⇒  MI ⇾ ∞



Capacity Loss



GM2F

GF2M GM2F

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)
“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurIPS’19)

Dhon = 0

Dhon = 1

Dhon = 0

Dhon = 1

…

Honesty Loss



shared: pose
source: background
target:  identity/clothing

SynAction

CelebA
shared: pose, background
source: hair color
target:  facial hair

Shapes-3D-A
shared: object color, shape
source: floor, wall color
target:  size, orientation

shared: wall color, size
source: object color, orient.
target:  shape, floor color

shared: floor color, orient.
source: wall color, shape
target:  size, object color

Shapes-3D-B

Shapes-3D-C

Datasets



guide (rotation and size)

so
ur

ce
 (o

bj
ec

t c
ol

or
 a

nd
 s

ha
pe

)

guide (floor and wall color)

so
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bj
ec

t c
ol

or
 a

nd
 s

ha
pe

)

Results

Shapes-3D-A
shared: object color, shape
source: floor, wall color
target:  size, orientation



guide (object color and orientation)

so
ur
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 (w

al
l c

ol
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e)

guide (floor color and shape)

so
ur
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e)

Results
shared: wall color, size
source: object color, orient.
target:  shape, floor color

Shapes-3D-B



Results
shared: floor color, orient.
source: wall color, shape
target:  size, object color

Shapes-3D-C

guide (size and object color)

so
ur

ce
 (f
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or
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guide (shape and wall color)

so
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 (f
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or
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nt

at
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n)
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GTRIFT
 (o
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X
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DID
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AugC
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GAN
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e

GTRIFT
 (o

ur)
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X

M
UNIT

DID
D

DRIT
++

AugC
yc

le
GAN

shared: pose
source: background
target:  identity/clothing

SynActionResults



CelebA
shared: pose, background
source: hair color
target:  facial hair

Results



Metrics and Qualitative Results

Manipulation Accuracy (for categorical):

Manipulation Accuracy (for real-valued):

Relative Discrepancy (for shapes only):



1. How to deal with attributes that “occupy” very different number of pixels in 

reconstruction losses (e.g. size vs color)?

2. What if attributes are varied in both but have different distributions? 

(e.g. 3% females are blonde, but 50% of males are blonde)

Remaining Challenges



Takeaway

We can use unsupervised alignment to 
discover domain-specific factors of 
variability without any supervision!



Applications: Interpretability and Control 

downstream 
model

I wonder how much my 

(e.g. emotion recognition model)
is sensitive to mouth openness?

mouth rest

surprised
sad

angry

downstream 
model

downstream 
model

downstream 
model

Train PuppetGAN!



I wonder whether my 

is sensitive to factors of variability 
absent in train, but present in test?

downstream 
model

Train Test

eth
nici

tyge
nder

pose

bg

factors of variability

Applications: Interpretability and Control 

shared 
from 

source

specific
from 
guide

⇒

Train RIFT!

⇒



Applications: Interpretability and Control 

“3DP3: 3D Scene Perception via Probabilistic Programming” by Gothoskar et al.

dx/dt = f(x, t)

size

location

shape

PuppetGAN

texture

RIFT

LRMF + ?



Learning better 

one-to-one mappings Manipulating factors 

with cross-domain supervision

We can alter a single specific attribute of 

real images using only synthetic 

supervision! (ICCV19 Oral)

?⇒ ⇒

u
n

iq
u

e

u
n

iq
u

e sh
ar

ed

Defending models against 

performing adversarial attacks on 

themselves improves semantic 

consistency! (NeurIPS19)

We can manipulate attributes unique to 

each domain independently from those 

shared across domains! 

(in submission)

We can get stable alignment wrt 

powerful discriminator families using 

normalizing flows! (NeurIPS20)

We can get stable alignment dy 

dualizing the logistic discriminator! 

(ICLR-W’18)



Thank you for your attention!

Questions?



“MetaPose: Fast 3D pose from multiple views without 3D supervision”, 
Usman, Tagliasacchi, Saenko, Sud (CVPR22)

“Syn2Real: A New Benchmark for Synthetic-to-Real Visual DA”, 
Peng, Usman, …, Hoffman, Saenko

Other research

multi-view RGB ⇾ 3D pose
no 3D GT, no camera calibration,

only synchronized RGB + 2D GT for training

https://docs.google.com/file/d/15FosXHvsc8uydIP4v4sMUHE1RYhWCNcf/preview


Backup deck begins



103
[“Stabilizing Training of Generative Adversarial Networks through Regularization”, Roth et al, NeurIPS’17]
[“Instance Noise: A trick for stabilising GAN training”, Ferenc Huszár, inference.vc]

but requires figuring out a good annealing schedule

Instance noise in the discriminator might help.  Closed-form 
regularizer exist.



104[“Which Training Methods for GANs do actually Converge?”, Mescheder et al., ICML’18]

A “toy GAN problem” confirms it.



105

Let’s extend to arbitrary augmentations.
Assume augmentation T(x) randomly flips an image by [0, 90, 180, 270] and we apply 
T(x) “as instance noise” before passing them to D(x) to make images “less separable”.

T
D(x)

“good” generated images real images

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T

generated images with wrong original orientation

D(x)



106

Here is what you get - “leaking augmentation”.

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T(x) is flip T(x) is color shift



107

How to avoid “leaking augmentation”?

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T
D(x)

generated
images

real 
images

P T(P) QT(Q)

We want T(x) such that T(P) = T(Q) ⇔ P = Q ,
i.e. we want an invertible operator “T: distribution 🠖 distribution”.

Not same as an invertible augmentation T(x)! 
Example: T(P) = P ∗ Gaussian(0, 1), i.e. T(x) = x + ε, ε ~ N(0, 1).

T

Q P T(Q) T(P)



In general, these transformations (rotation, shift, etc.) induce operators over the 
space of distributions and have some group structure.

(In appendix) they show sufficient conditions for spectra of these linear operators 
not containing zeros ⇒ operators themselves being invertible.

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]



Teaser: core results

Learning better 

one-to-one mappings

We can get stable alignment wrt powerful 

discriminator families using normalizing flows! 

(NeurIPS20)

Defending models against performing adversarial 

attacks on themselves improves semantic 

consistency! (NeurIPS19)

Manipulating individual factors 

with cross-domain supervision

We can alter a single specific attribute of real 

images using only synthetic supervision! 

(ICCV19 Oral)

We can infer which attributes are unique to each 

domain and modulate them in a controlled manner! 

(in submission)

Bonus: Multi-view / 3D simulation

Neural networks can be trained to perform regularized bundle adjustment to robustly estimate 3D poses 

from uncalibrated multi-view RGB without 3D supervision! (CVPR22)

We generated one of current de-facto standard datasets for synthetic-to-real adaptation (Syn2Real)



We have synchronized multi-view RGB footage 
Task

and we want to estimate 3D human pose from it. 

✗ no camera 

calibration

✗ no GT 3D poses

image from “Learning Monocular 3D Human Pose Estimation from Multi-view Images”, Rhodin et al (CVPR18)

some 2D pose annotations



Overview

“MetaPose: Fast 3D pose from multiple views without 3D supervision”, Usman, Tagliasacchi, Saenko, Sud (CVPR22)



“MetaPose: Fast 3D pose from multiple views without 3D supervision”, Usman, Tagliasacchi, Saenko, Sud (CVPR22)

Human3.6M

SkiPose

https://docs.google.com/file/d/15FosXHvsc8uydIP4v4sMUHE1RYhWCNcf/preview


“Syn2Real: A New Benchmark for Synthetic-to-Real Visual Domain Adaptation”, Peng, Usman, …, Hoffman, Saenko



d(                ,              )minimize
“distinguishability”

T(A) B

Solution: Image Translation / Domain Alignment

114

T(x)



[I have all the other work]



[downstream model]



takeaway


