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Cross-Domain Image Manipulation: Motivation
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Cross-Domain Image Manipulation: Motivation

Taller - Heavier *

More
Female

Younger - Shorter

precise control over all attributes!



Solution: Unsupervised Image Translation / Domain Alignment

find T that minimizes

distinguishability (




Solution: Unsupervised Image Translation / Domain Alignment

MMD, EMD, CORAL, etc. neural adversarial
v easy to optimize v expressive
X work poorly in higher dims X unstable training

find T that minimizes

distinguishability (




Solution: Unsupervised Image Translation / Domain Alignment

A |

easy t =2

vmo, e Topic 1: Stable and expressive ™
distribution alignment.

find T that minimizes

distinguishability (




Domain Alignment: Synthetic-to-Real
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manipulate mouth

in the synthetic
domain

no precise control over attributes!



Domain Alignment: Synthetic-to-Real

Topic 2: Precise manipulation of real
data using synthetic supervision. ..

ain

no precise control over attributes!

precise control over all attributes!



Domain Alignment: Domain-specific factors

factors of variation
in source and target domains

orientation

synthetic supervision




Domain Alignment: Domain-specific factors

factors of variation
in source and target domains

orientation

Topic 3: Disentanglement and manipulation
of domain-specific and shared factors
in isolation without supervision.



Source Distribution Target Distribution

ground truth 1-to-1 cross-domain mapping

13



Task

Source Samples

Goal:
reconstruct F from
unpaired samples

Target Samples
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Task

Source Samples (Cats) Target Samples (Dogs)

Pad

v/is a dog
v/ same coat color
v/ same pose
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How to find a good F?

A

d

(An empirical estimate of)
a statistical distance
d(A, B): Set, Set — [R

O

1050 .,

O

77> d

A

OC%Q)

“looks like A and B are

coming from different
distributions”

“looks like A and B

might be coming from
the same distribution”

Example: difference of means

d(4, B) = [|i(A) — i(B)|

d(

Q) =d(|g29 )

“look same to me”

>



How to find a good F?

Source Samples Translated Source Samples Target Samples
minimize ' s l\ -+
statistical ; ;;\
distance | 15 /
d(F(A), B) 9

'15"»1'?”:
F(A)={F(a) : a < A} B=1{b}

min d(F(A), B) + R(F)
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How to find a good F? - what we expect

urc Samples Translated Source Samples Target Samples

HIGH
statistical
distance

d(F(A), B)

... optimizing F ...

LOW
statistical

distance
d(F(A), B)

min d(F\(4), B) + R(F)




What could go wrong?
Simple parametric models are “too weak”

Source Samples Translated Source Samples

LOW
statistical
distance

F(A) = {F(a) : a < A}

min d(F(4), B) + R(F) .



What could go wrong?
Non-parametric models (MMD, EMD) “do not generalize” well

‘ AS HIGH AS ‘

JUST NOISE
statistical
distance

LOW
statistical

distance
d(F(A), B)

pairwise distances
N' ] [y =
/
— 1
’l p (®




What could go wrong?
Adversarial alignment (GANSs) are unstable and fail silently

Domain T(A) Domain
Classifier Classifier

Solving min-max with 1st order methods is hard!
This problem is min-max!
f(xv y) =Ty
mCi;n mgx V(D, Q) min, max, f(z,y)
g(x,y) = (ZC, _y)
Tyt =@t 1 egle, y)
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Bounding Likelihood Ratios with Normalizing Flows

Non-parametric
(MMD, EMD)

closed-form

estimators exists

can be minimized
via gradient descent

model-free
(metric-based)

o ‘
®o-""0
® —~ 0o

~ L

— -

Simple Parametric
(CORAL)

closed-form

estimators exists

can be minimized
via gradient descent

simple data model
(e.g. normal)

[
[
[ o
[ o
Adversarial (GAN,

Monge—Kantorovich)

min-max objective

adversarial training

powerful implicit
data model (NN)

: Motivation
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Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

G- -

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Stable Alignment using Dual Adversarial Distance: Motivation

- --__ o °
SIz--9 () ®
e----0 ®o-""0 ® ®
*e----9 ® -- o o o
Non-parametric Simple Parametric Adversarial (GA.N, Objective Dualization
(MMD, EMD) (CORAL) Monge—Kantorovich)
closed-form closed-form . biecti . in obiecti
estimators exists estimators exists min-max objective [> min-min objective
can be minimized can be minimized d ial traini dient d t
via gradient descent via gradient descent adversarial training [> gradient descen
model-free simple data model powerful implicit
(metric-based) (e.g. normal) data model (NN)

24
“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18)



Stable Alignment using Dual Adversarial Distance: Our Solution

Adversarial alignment loss for the logistic discriminator:

A
d(A, B") = max Z log(o(w’ x;)) + Z log(1 — o(w’ z;)) — §'wTw

.’,CZEA .iCjEB’

Contribution: an equivalent dual adversarial alignment loss for the logistic D(x).

: 1 1
d(A,B') = min -alQuasas+ -apQppap — ahQapap + H(aa) + H(ap)
0<a;<1/A 2 2
st |laalli = llesl:

Qap = ATB H(a)=alloga+ (1 —a)l'log(l — a)

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18) 25



Stable Alignment using Dual Adversarial Distance: Our Solution

AT

max Z log (o (y; (w a:z—l—b)))—?w w

log(o(u)) < a’u+ H(a), a; €[0,1]
H(a) = a’loga+ (1 —a)’log(l — )

min max oy (wl z; +b) + H(o) — Zwlw w* = %(23 TjY;0)
0<a<l whb £~ 2
Zyy’b 0

. 1 7 — 1l 7 _
=i, gzaz%(yzwz) (yjz;) + H(a) = min oo Qa+ H(a) =
ij

1 1
OSgiliSnl/A §Q£QAACYA - 5(1%@33&3 — a4 Qapap + H(an) + H(ap)
s.t. ||aall1 = |lasl|1

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18)



Stable Alignment using Dual Adversarial Distance: Experiments

Linear dual
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“Stable Distribution Alignment Using the Dual of the Adversarial Distance

Linear min-max
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Stable Alignment using Dual Adversarial Distance: Experiments

Kernel dual

175 1

150 -

125 A

100 -

0.75

0.50 A

0.25 A

0.00 T
-2.0 -15

“Stable Distribution Alignment Using the Dual of the Adversarial Distance”, Usman, Saenko, Kulis (ICLR-W’18)
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Stable Alignment using Dual Adversarial Distance: Takeaway

Non-parametric
(MMD, EMD)

closed-form

estimators exists

can be minimized
via gradient descent

model-free
(metric-based)

o ‘
®o-""0
® —~ 0o

~ L

— -

Simple Parametric
(CORAL)

closed-form

estimators exists

can be minimized
via gradient descent

simple data model
(e.g. normal)

[
[
[ o
[ o
Adversarial (GAN,

Monge—Kantorovich)

min-max objective

Dual Adversarial
Distance

min-min objective

adversarial training

powerful implicit
data model (NN)

gradient descent

again, relatively
simple data model

29




Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

G- -

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Bounding Likelihood Ratios with Normalizing Flows: Motivation

P~ TS
.—==:::__. . . . . .
e« ---9 o--"@ O o
-~
o----9 ® —~ 0o o o
N -

Adversarial (GAN,
Monge—Kantorovich)

Non-parametric
(MMD, EMD)

Simple Parametric
(CORAL)

closed-form
estimators exists

closed-form

estimators exists A AHIRERS C DRI

can be minimized
via gradient descent

can be minimized

via gradient descent adversarial training

model-free
(metric-based)

simple data model
(e.g. normal)

powerful implicit
data model (NN)

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

®o.___4°

Log-Likelihood Ratio
Minimizing Flows (new!)

closed-form
upper bound

can be minimized
via gradient descent

any tractable density

+ normalizing flow

31



Bounding Likelihood Ratios with Normalizing Flows: Method

Parametric Density
Family M

A TA) || B

Goal:

find T such that T(A) and B are indistinguishable for M.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

0.0 1
A 14 B 1 a n e T

“look same to me”

32



Bounding Likelihood Ratios with Normalizing Flows: Method

Parametric Density
Family M

A B

We start with two dataset A and B that we want to align.
We assume that we fitted two separate density models
with parameters 0, and 0, to each dataset individually.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

33



Bounding Likelihood Ratios with Normalizing Flows: Method

HAT Parametric Density
HA : T / Family M

—
: o 05
A T(A) B

Then we introduce the “transformed” distribution T(A)
and fit a density model to it.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

34



Bounding Likelihood Ratios with Normalizing Flows: Method
[

Oar o
A
—> B
ﬁfff.
i hmr
A TQA) | | T@WUuB || B

Then we introduce the “shared” density model S
fit to the “combined” dataset T(A) U B.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

35



Bounding Likelihood Ratios with Normalizing Flows: Method

0 g
. Family M
A ‘e T i

—> i
- Op
oo :
i N _ :|
_-___’/.___.\\_-S_’_,:-"’.__.\ =
A TA) | | TAUB || B

Observation 1 (= Lemma 2.1):
The likelihood of the “shared” model (S) trained on the “combined”
dataset is always lower than likelihoods of “private” models trained on

each dataset alone (T(A), B), unless both datasets are from the same
“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, euotribBatioieurPS 20)



Bounding Likelihood Ratios with Normalizing Flows: Method

0 Parametric Density
A « Family M

T v
> AT: .HS

0B

A TA) | | T@Q)UuB | | B

Observation 1 (= Lemma 2.1):
The likelihood of the “shared” model (S) trained on the “combined”
dataset is always lower than likelihoods of “private” models trained on

each dataset alone (T(A), B), unless both datasets are from the same

. . . 37
“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, euotribBatioieurPS 20)



Bounding Likelihood Ratios with Normalizing Flows: Method
S

0 ar ‘ /LRD
4T R
S 05
e
,9‘_ > - ¢
B __’/l...'\ 95"-’_’,.:_§\ :|

iﬁl — B B H B ?—-_
A TA) | | T UB | | B

Definition 1 (Likelihood-Ratio Distance):
LR-distance between T(A) and B equals the difference between
log-likelihoods of the optimal “shared” density S fit to the combined
T(A) U B and two optimal “private” densities fit to T(A) and B

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sudipdiepreaetise tiguriPS'20)



Bounding Likelihood Ratios with Normalizing Flows: Background

P Y=TX)=X+3 P
X — Y
A
Normalizing flows:
- efficiently invertible
p Y=T(X)=X/2+3 P - efficient computation of
X — 2. Y det Jac[T](x)
v
< - ] = can apply change of
Y variables formula efficiently!

= change of variables

1 T
H\/‘_TT'(x)

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

Y = T(X)
Px . Pv




Bounding Likelihood Ratios with Normalizing Flows: Method

Oar
04 T
—
A8 05 el U5
e e T N o — " g S = —
A 1@4) | [ TayuB] [B

Observation 2 (= Lemma 2.2):
The optimal likelihood of the transformed dataset T(A) can be
approximated

in closed-form if T(x) is a normalizing flow.
“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)
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Bounding Likelihood Ratios with Normalizing Flows: Method

Oar o
4T R
— B
0l S
_/‘??'\ HS .’""_" .
1 11 B
A TA) | | TAUB || B

Conclusion (= Theorem 2.3):
We can find the optimal flow T* that minimizes the adversarial LR-distance
(the “gap” between shared private likelihoods) by minimizing a

h | ® I w WTam AW

Ly pvr (A, B, ¢,05) = —logdet |V, T(A4; ¢)| — log Py (T'(A; ¢); 0s5) — log Pas (B; 0s) + c(A, B)

41



Bounding Likelihood Ratios with Normalizing Flows: Method

Lemma 2.2. IfT(x; ¢) is a normalizing flow, then the first term in the objective (1) can be bounded
in closed form as a function of ¢ up to an approximation error Ey;os. The equality in (2) holds when
the approximation term vanishes, i.e. if M approximates both A and T'(A; ¢) equally well; Py is the
true distribution of A and TP, ¢| is the push-forward distribution of the transformed dataset.

max log Py (T(A;¢); 0ar) < max log Prr(A;04) —logdet |V, T(A; @)+ Evias (A, T, M) (2)
A

OaT

gbms(A,T, M) — mc?x meinDKL(PA;M(e)) — IHQIDDKL(T[PA,¢],M(0))

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)



Bounding Likelihood Ratios with Normalizing Flows: Method

First, we add and remove the true (unknown) entropy H[P4] = —E,~p, log Pa(a):
}{4(a
Héix Bsvip; log Paila;04) = n;ix lEaNpA log Pa(a) — Eqnp, log W;Q)A)
= H[P4s] —minE,.p, |log _Fala) = H[P4s]| — min Dk, (Pa; M(0)). (%)
04 . Ppr(a;04) 0 ’

And then add and remove the (unknown) entropy of the transformed distribution H|[T'[P4, ¢]]. We
also use the change of variable formula T[Pa](z) = Pa(T~'(z)) - det [V, 7' (x)||and substitute
the expression for H[P4] from the previous line (x):

max log Prr(T(A; ¢); 0ar) = maxE, or(p, ¢ log Prp(a’; 0ar)
OaT OaT

T[PA,¢](Q,)]

=max llanT[PA,dﬂ log T[PA](CL/) - ]Ea'NT[PA,cb] log m

Oar

=max [EQNPA PA(T™H(T(a,9),9)) +

OaT

+logdet |V, T~Y(T(a,¢),d)| — Drr(T[Pa, ¢; M(@AT))]
= H[P4] —logdet |V,T(A, ¢)| — meinDKL(T[PA, ¢l; M(6))
= I%&X log PIVI (A, 914) - IOg det |VIT(A7 (p)’ + gbias (A7 T7 M)

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)



Bounding Likelihood Ratios with Normalizing Flows: Method
[

Oar o
04 —i—
—>';;0 - 0 e
AT 5 el T
ivT 1 aaml W
A 1A | [ TayuB | [ B

Conclusion (= Theorem 2.3):
We can find the optimal flow T* that minimizes the adversarial LR-distance
(the “gap” between shared private likelihoods) by minimizing a

h | ® I w WTam AW

Ly pvr (A, B, ¢,05) = —logdet |V, T(A4; ¢)| — log Py (T'(A; ¢); 0s5) — log Pas (B; 0s) + c(A, B)

44



T(A), B

manifold
structure

top / bottom
classes

e
-
10 10 1.00 1.00
top / bottom
. gn 0.9 0.9 0951, 0.95
classifier
0.8 0.8 0.90 0.90
accuracy
0.7 0.7 0.85 0.85
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 20 40 60 80
500 15
0.06 = 3
400
Ioss 0.04 300 2 2
0.02 200
1 1
100
0.00
0 20 4 6 8 e R e R % 20 40 60 80 TR Tl e e

[12] baseline inspired by “AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows” by Grover et al.
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Bounding Likelihood Ratios with Normalizing Flows:
Special Cases

Special cases:
1. Gaussian LRMF < matching mean and variance.

2. Minimizing an infinite capacity LRMF loss & minimizing JSD

da(A,B) =2-JSD(A, B) — Dx (A, M) — Dk (B, M) +2-Dxr((A+ B)/2, M)

3. Minimizing LRMF & training a GAN with a particular discriminator
class

o o N Py (3 6)
max | log D(T'(4)) + log (1 — D(B)) + log4], 7“9’9)_{PM(x;QHPM(x;@’)}

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20) 46



Bounding Likelihood Ratios with Normalizing Flows: Method
[

Oar o

04

D*(x)

The Optimal Bayes Classifier D*(x) is defined in closed form

P(X|04r)

b (m) - P(X|0a7)+P(X|0B)

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)

47



DATA

MNIST (B): ISHO s Al 4 ‘QHQ“
s o S Y730
(}

LRMF T(A) l

in emb space of VAEGAN: G3Hél/ :3 I
in pixel space (GLOW): WFVU /WWml 1

-

Explicit failure signal:
final LRMF loss # 0

12] baseline inspired by “AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows” by Grover et al



Bounding Likelihood Ratios with Normalizing Flows:

Limitations
Gaussians
HA 0

If A and B are far apart, a shift 7(x,; b) does

B

not affect the likelihood of 7(4) or S, s "0 A 7 -
so the LRMF objective is locally constant
w.r.t. the transformation parameter b. Probab'ilities did not
ange.
5 HAcih 8 0 B
0L rjur (A + p, B, $,0)/0¢]|| ox exp(—p*) - 0 ~
e ‘ - - > -_-S_‘ z - _ >

Gradients of LRMF (wrt the transformation) between two-gaussian
mixtures vanish as distribution means become further away from each
other.

“Log-Likelihood Ratio Minimizing Flows”, Usman, Sud, Dufour, Saenko (NeurlPS’20)



Bounding Likelihood Ratios with Normalizing Flows: Takeaway

Non-parametric
(MMD, EMD)

model-free
(metric-based)

stable minimization

no mode collapse

stable gradients

.

®o-""0

® —~ 0o
~ L

— -

Simple Parametric
(CORAL)

simple data model
(e.g. normal)

stable minimization

no mode collapse

stable gradients

[
[
[ o
[ o
Adversarial (GAN,

Monge—Kantorovich)

powerful implicit
data model (NN)

unstable min-max

mode collapse

vanishing generator
gradients

Log-Likelihood Ratio
Minimizing Flows

any tractable density
+ normalizing flow

stable minimization

no mode collapse

vanishing generator
gradients



Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

G- -

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Disclaimer

| am the second author, and my contribution is limited mostly to technical help:

“Adversarial Self-Defense for Cycle-Consistent GANs”,
Bashkirova, Usman, Saenko (NeurlPS’19)

| include this paper in this presentation, because the method proposed in this paper is
essential to two remaining papers | talk about in this presentation.



What could go wrong?
The found mapping might be nonsensical

A
statlstlcal
distance | !

NO SEMANTIC
CORRESPONDENCE

53




Cycle Reconstruction Improves Semantic Consistency

0 A

G ] G
/\ = - - /\ —
Z)A X IDA Y z Y N _~7* Yy ~__| X Y
G i i
X /_\ Y X ./ ] Y X R Y cycle-consistency
\/ ile-conststansy \ > 7.\ ..... - loss
F loss i O __/.
(@ | (®) | (€)
Zebras 7 Horses __. Summer T Winter

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, Zhu et. al., ICCV2017



Improving Semantic Consistency with Translation Honesty

RGB Segmentation

v\
A

CycleGAN
UNIT

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)




Improving Semantic Consistency with Translation Honesty

noisy noisy

input ground truth translation Gemdlition reconstruction

reconstruction
»

CycleGAN
Observation: CycleGAN

reconstructs input images
perfectly by cheating - it
embedded structured noise into

UNIT
generated translations.
Cicnlmici}s[:N ' Solution: we propose defence
techniques that prevent this
“cheating”, and, consequently,
improve the semantic
el consistency of outputs.
+ guess

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)
“CycleGAN, a Master of Steganography”, Chu et al, NeurlPS’17 Workshop

56



Improving Semantic Consistency with Translation Honesty

a b’=G,,.(a)
. i know that the network
G G - since we
AZB B2A : \ G,,, adds adversarial noise
. _
bcyc = GAZB(GBZA(b))
the cycle-reconstruction b_
G G will also have embedded
B2A A2B . )
adversarial noise!

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)




Improving Semantic Consistency with Translation Honesty
b a’=G, ,(b) b .= G,,5(Gyy (b))

A2B

=0 - “the first image is the original,
the second is a cycle reconstruction”

noise

noise | =1 - “the first image is a cycle reconstruction,
the second is the original”

Use the adversarial noise detector
to penalize the model!

GG

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)




Improving Semantic Consistency with Translation Honesty

Reconstruction honesty - how much the performance decreases if we quantize segmentations?
N
I
RH = — Y {IGa(IGB(X:)]) - Yill, — Ga(Gr (X)) - Yilly},
|

Sensitivity to noise - how much the output changes if we add noise?

N
SN(0) =+ 3 IGA(GB(X) + N(0,0) — Ga(G(Xi)l,

Pix2Pix loU - do generated images produce ~ Pix2pix

same segmentation maps as the original?
loU(piz(Ga(Bi)), piz(A;))

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)




Improving Semantic Consistency with Translation Honesty

Method acc. segm T IoU segmT IoU p2pt RH| SNJ
CycleGAN 0.23 0.16 0.20 2743+ 6.1 4469
CycleGAN + noise* 0.24 0.17 0.23 9.17+74 94.2
CycleGAN + guess* 0.24 0.17 0.21 114470 2126
CycleGAN + guess + noise* 0.236 0.17 0.24 6.1+59 150.6
UNIT 0.08 0.04 0.06 64+11.7 3615
MUNIT + cycle 0.13 0.08 0.17 25+89 2449
pix2pix (supervised) 0.4 0.34 B E -
Table 2: Results on the GTA V dataset.
Method acc. segmT IoU segm? IoU p2pt RH| SN|
CycleGAN 0.23 0.18 0.21 21.8+352 2512
CycleGAN + noise* 0.24 0.19 0.22 1227 +4.42 222.2
CycleGAN + guess* 0.24 0.184 0.224 75+24 2354
CycleGAN + guess + noise* 0.25 0.19 0.22 -0.45 +2.3 2383
UNIT 0.21 0.15 0.12 19.6 £ 6.1 528.2
MUNIT + cycle 0.15 0.09 0.12 21.4+79 687.3
pix2pix (supervised) 0.3 0.23 - - -

Table 3: Results on the Google Maps dataset.

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)



Improving Semantic Consistency with Translation Honesty

input ground truth

| Method MSE| SN/
CycleGAN 32.55 6.5
. CycleGAN+noise* 22.18 1.1
!‘ l , CycleGAN+guess* 2357 2.4
‘ 2313 135

| CycleGAN+guess+noise™

noise.

| Bl

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS’19)

Table 1: Results on SynAction dataset: mean
square error of the translation and sensitivity to



Improving Semantic Consistency with Translation Honesty:
Takeaway

Cycle-consistent models hide information
in the form of adversarial noise.

If we prevent them from doing this,
the semantic consistency of the alignment
Improves.



Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

E-E e

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Learning from Cross-Domain Demonstrations: Task

manipulate a single trained exclusively on
specific attribute of a real image synthetic demonstrations
using a synthetic reference. and unlabeled real images.

mouth

N

% light
e | -

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’'19) 64




Learning from Cross-Domain Demonstrations: Demo

original

manipulated

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’'19)

65



Learning from Cross-Domain Demonstrations: Demo

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’'19)



Learning from Cross-Domain Demonstrations: Demo

2drrleo33
2AFEIZAI S

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)





https://docs.google.com/file/d/1t6QFkqWAS6RcFhB_ac5I6YoTbbR8SdFC/preview

PuppetGAN: Method

Our goal is to train a model that splits the
embedding into two parts:
- one to represent the attribute we
manipulate (mouth),
- the other to represent all other
attributes (hair, mic, etc).

& ¢ (ZZ?:loder

all other mouth 1
attributes ou :
1

1

|

disentangled \ l embeddings

} \ encoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19) 69



PuppetGAN: Method . i
[

\'K
T\'A/

S w}l

We used autoencoder -
and cycle losses on both domains.

— < - — 0=

‘/'\

Y\'K

\'K 0

4/'\ o A/'Y\
Y\'A/ o

Qc

Q>

- S
S
)

‘C cyc Lcyc

& ¢ real E Lrec
decoder shared : :
a b a b

N ¢ synthetic ¢ \ encoder
decoder . .

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)
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PuppetGAN: Method

And GAN losses on all outputs.

& ¢ real
decoder shared
\ ¢ synthetic ¢ N encoder
decoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19) [



PuppetGAN: Method

We used supervised losses
on synthetic data.

E— e
b b

¥ ¢ real
decoder shared
N ¢ synthetic ¢ N encoder
decoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19) 72



PuppetGAN: Method

Problem:

The real decoder might ignore one input.

& ¢ real
decoder shared
\ ¢ synthetic ¢ N encoder
decoder

73



PuppetGAN: Method

We used compositional constraint losses
to ensure that all embeddings are used.

& ¢ real
decoder shared '
N ¢ synthetic ¢ \ encoder —
decoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)

74



PuppetGAN: Comparing to related work

Rotation Size
'y ‘\l
] iy mmm CloT 6To 1

- + rest |} u .m.
(c) DiDA

@n

.b>CVAE HONEBEHEE HBEOROn

(d) MUNIT

's[6[8]8[3]5
FEZENE HEEAED
CENEER BBEECO60

(a) MUNIT applied to mouth expression in VW-300 (e) Cycle-Consistent VAE

Random
style

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’'19)



PuppetGAN: Comparing to related work

Disentanglement Quality

Input Domain Discrepancy

Mdel Size Rotation Size Rot
Acct ript rlad Veud Acct rff vl Vead | fif Jon Jie Jam

PuppetGAN 073 085 0.02 002 097 040 011 001

CycleGAN [2¥] 0.10 0.28 0.06 0.28 0.11 0.54 0.37 0.33

DiDA [2] 0.71 0.18 0.09 0.02 0.86 0.04 0.35 0.02 0.27 0.78 0.05 2.20

MUNIT [10] 0.96 0.06 0.09 0.01 1.00 0.00 0.15 0.01

Cycle-VAE [¢] 0.17 0.92 0.16 0.01 0.29 0.45 0.10 0.01

PuppetGANT 0.64 0.28 0.07 0.01 0.10 0.06 0.04 0.01 0.90 0.92 0.06 108

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” by Usman, Dufour, Saenko, Bregler (ICCV’19)



PuppetGAN: Takeaway

We can manipulate specific attributes of
real images using supervision from crude
synthetic simulations!



Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

- B

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Disentangling Domain-Specific and Domain-Invariant Factors of Variation

Preserve as much
as possible

1-to-1 alignment problem
is not well defined!

many-to-many alignment problem is well defined!




Disentangling Domain-Specific and Domain-Invariant Factors of Variation

Goal 1: learn which factors of variation are shared vs domain-specific from data

source (brunet males) target (females) source target

shared shared
(source-specific) , ( ) (target-specific) (source-specific) (. ) (target-specific)
skin tone, pose, . object color, ) .
mustache hair color floor, wall colors rotation and size
background color shape

Goal 2: translate a source image to the target domain quided by a target example

shared specific shared specific
from ! l"‘ % from = from + from =
source |l - guide source guide ,

StarGANv2  (ours) : MUNIT (ours)
“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)




Disentangling Domain-Specific and Domain-Invariant Factors of Variation

Domain A &

K
. X )
| & 'bz o) éx Q (,,?‘ «\
§ E e B S F S E s
" g -
Domain B

shared: object color, shape
source: floor, wall color
target: size, orientation

“Evaluation of Correctness in Unsupervised Many-to-Many Image Translation” by Bashkirova, Usman, Saenko (WACV22)
“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)




Disentangling Domain-Specific and Domain-Invariant Factors of Variation

_____________

‘| AdaIN

e e o o e o o =

AdaIN(z,y) = o(y) (x_—'u(m)> + u(y)

“Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization” by Huang et al., ICCV’17



RIFT: Translation via Restricted Information Flow

. guide: female
| Realism Loss

hair color

emb | ~ . Honesty Loss

- | Cycle
] L, Loss
source domain: N
brunet males orientation, .
______ Capacity
background | Penalty
mustache

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)

“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS'19)




Capacity Loss
Theorem 1. The effective capacity of the guided embed-

ding, i.e. the capacity of the a — a' channel, i.e. the mutual
information M1(a; a’) is bounded by:

MI(a;a’) < dim(s(a)) - log, (1 + L/o?),

where a’ = G(b,s(a) +¢), € ~ N(0,0?),

a b a’=G(b,s(a) +¢)
and L = E|s(a)||3, a ~ A, b~ B

orientation,
L -] s(a) background g ~N(0,0%) Corollary:

Lo o= M|
O-0= Ml »

mustache

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)



Capacity Loss

Theorem 1. The effective capacity of the guided embedding, i.e. the capacity of
the a — a' channel, i.e. the mutual information MI(a;a’) is bounded by:

MI(a;a’) < dim(s(a)) - log, (1 + L/o?),
where a’ = G(b, s(a) +¢€), € ~N(0,0?),
and L = E||s(a)||3, a ~ A, b~ B
Proof. Applying the data processing inequality
X->Y—>Z7Z = MI(X;Z2)<MI(X;Y) N MI(X;Z) <MI(Y; Z)
twice to following Markov chains
a— (s(a)+¢) = a, a—s(a)— (s(a)+¢)
gives us
MI(a;a’) < MI(a; s(a) + ) < MI(s(a); s(a) + ¢)

intuitively meaning that the overall pipeline always looses at least as much in-
formation as each of its steps. Then expanding the mutual information in terms
of the differential entropy h(X) gives us

MI(s(a); s(a) + ) = h(s(a) +€) — h(s(a) + ¢|s(a))
= h(s(a) +¢€) — h(e)
Since the the second raw moment (aka power) of s(a) is bounded by L, the
entropy h(s(a) + ) will be maximized if s(a) is a k-dimensional spherical mul-
tivariate normal with variance L, where k = dim(s(a)) therefore
MI(s(a);s(a) 4 €) < h(N(0; L + 02)) + h(Nk(0;02))

1. ((L+02)F



Honesty Loss

=0
=1
Gzr
7 7 =0
Geom Gpor 7 7 =1

“RIFT: Disentangled Unsupervised Image Translation via Restricted Information Flow” by Usman*, Bashkirova*, Saenko (in submission)
“Adversarial Self-Defense for Cycle-Consistent GANs”, Bashkirova, Usman, Saenko (NeurlPS'19)




shared: object color, shape
source: , wall color
target: size, orientation

Datasets shapes.3p.a ol TN N ooeg

Shapes-3D-B m
TR

shared: wall color, size
source: object color, orient.
target: shape,

shared: , orient.
source: wall color, shape
target: size, object color

Shapes-3D-C

shared: pose
source: background
target: identity/clothing

SynAction

shared: pose, background
source: hair color
target: facial hair

CelebA




Results

shared: object color, shape
source: , wall color
target: size, orientation

Shapes-3D-A

guide (rotation and size) guide (floor and wall color)

r @
& ¢ ~
-

source (object color and shape)

source (object color and shape)



Results

3 1 shared: wall color, size
Shapes-3D-B source: object color, orient.
_ 3 l.m target: shape, floor color
guide (object color and orientation) guide (floor color and shape)

source (wall color and size)
source (wall color and size)




Results

source (floor color and orientation)

Shapes-3D-C m

guide (size and object color)

shared: , orient.
source: wall color, shape
target: size, object color

guide (shape and wall color)

L o
| o

'
|

source (floor color and orientation)

S 3 : ' % % ; %
“
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shared: pose, background

source: hair color




Metrics and Qualitative Results

Manipulation Accuracy (for categorical):

ACCy, = p(fr(Fazs(a,b)) = yi. | fr(a) # fi(D))

where the “correct” attribute value equals y; = fi(a) for
shared attributes, and y; = fi(b) otherwise. For real-

Manipulation Accuracy (for real-valued):
ACCy = p(|| fx(Fazs(a, b)) —yill < || fr(Fazs(a,b))—yll)

where y; = fr(a) and yj. = fi(b) for shared attributes,
and vice-versa otherwise.

Relative Discrepancy (for shapes only):
>k |ACC;, — ACCY, |

RD = 100 - k Bl
Y. (ACE: 4-ACED)

Method 3DS SA CA AVG RD
StarGANv2 82 59 97
MUNIT 58 37 53 49 56
MUNITX 33 52 55 47 T4
DRIT++ 18 24 55 32 20
AugCycleGAN 12 37 40 29 20
DIDD 64| 58 35
RIFT (ours) 88 78 60 75 6
RAND 12 24 49 27 9

Table 1: Average (AVG?) manipula-
tion accuracy (ACC) and relative dis-
crepancy (RDJ) across 3D-Shapes-ABC
(3DS), SynAction (SA), and CelebA-FM
(CA). Notation: best, 2nd best.



Remaining Challenges

1. How to deal with attributes that “occupy” very different number of pixels in
reconstruction losses (e.g. size vs color)?

INE S

2. What if attributes are varied in both but have different distributions?
(e.g. 3% females are blonde, but 50% of males are blonde)




Takeaway

We can use unsupervised alignment to
discover domain-specific factors of
variability without any supervision!



Applications: Interpretability and Control

| wonder how much my
angry

* (e.g. emotion recognition model)

surprised is sensitive to mouth openness?

downstream

model

sad

downstream
model

e

=l

downstream
model

.

Train PuppetGAN!

downstream

model




Applications: Interpretability and Control

| wonder whether my

downstream
model

is sensitive to factors of variability
absent in train, but present in test?

Train RIFT!

s;f::;);ic = j
o

shared
from :
source ki A




Applications: Interpretability and Control

texture

RIFT

LRMF + ?

(D

size

location

shape

/// \&&\\ =

PuppetGAN

“3DP3: 3D Scene Perception via Probabilistic Programming” by Gothoskar et al.

dx/dt = f(x, t)

\\\\\\\\§\\ i
l\\ \\\\\1})2)//
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Learning better
one-to-one mappings

We can get stable alignment dy
dualizing the logistic discriminator!
(ICLR-W’18)

Manipulating factors
with cross-domain supervision

We can get stable alignment wrt
powerful discriminator families using
normalizing flows! (NeurlPS20)

We can alter a single specific attribute of

real images using only synthetic
supervision! (ICCV19 Oral)

E-E &=

Defending models against
performing adversarial attacks on
themselves improves semantic
consistency! (NeurlPS19)

We can manipulate attributes unique to
each domain independently from those

shared across domains!

(in submission)




Thank you for your attention!

Questions?



Other research

multi-view RGB — 3D pose
no 3D GT, no camera calibration,
only synchronized RGB + 2D GT for training

“MetaPose: Fast 3D pose from multiple views without 3D supervision”, “Syn2Real: A New Benchmark for Synthetic-to-Real Visual DA”,
Usman, Tagliasacchi, Saenko, Sud (CVPR22) Peng, Usman, ..., Hoffman, Saenko


https://docs.google.com/file/d/15FosXHvsc8uydIP4v4sMUHE1RYhWCNcf/preview

Backup deck begins



Instance noise in the discriminator might help. Closed-form
regularizer exist.

Standard

Rzgular;zed J;nsen-OShannlon GAZN
F.(P,Q;¢) = Ep|In(p)] + Eg [In(1 — ¢)] — —Q 15(P,Q; ¢)
Qs(P,Q;¢) := Ep [(1 - ¢(x))*||Vo(x)|]*] + E;w‘ [p(x)*[IVe(x)|I°]

but requires figuring out a good annealing schedule

[“Stabilizing Training of Generative Adversarial Networks through Regularization”, Roth et al, NeurlPS’17] 103
[“Instance Noise: A trick for stabilising GAN training”, Ferenc Huszar, inference.vc]



A “toy GAN problem” confirms it.

e = = s
y : .é//’, :
AR o B
/ f . : O O
pp=4& Pe =y ° ‘ " i ‘4 ] f
A : R - - v 7 ’ /
== E -1 - o o P / /
' Dylx v ;é?
,‘/ 3 T ’o - 1 2
" (f) Instance noise
1P R
A AR
— . e 2 o ;
Dplz) =9 »“'Gﬁfmi?,'
! ! : v / ,
e R . A . / /
Po = dg Tl
N A
pD G 50 (c) WGAN (ng = 5) (g) Gradient penalty

[“Which Training Methods for GANs do actually Converge?”’, Mescheder et al., ICML’18]

104



Let’s extend to arbitrary augmentations.

Assume augmentation T(x) randomly flips an image by [0, 90, 180, 270] and we apply
T(x) “as instance noise” before passing them to D(x) to make images “less separable”.

" 14 H
good” generated images real images

X

generated images with wrong original orientation
g e o

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurlPS’20] 105



Here is what you get - “leaking augmentation”.

T(x) is flip T(x) is color shift

-

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurlPS’20] 106



How to avoid “leaking augmentation”?

real generated
images images

.
P | | T(P) |=>D(X)<=| T(Q) || Q

We want T(x) such that T(P) =T(Q) ® P=Q,
i.e. we want an invertible operator “T: distribution [J distribution”.

Not same as an invertible augmentation T(x)!
Example: T(P) = P * Gaussian(0, 1), i.e. T(x) =x+ €, € ~ N(O, 1).

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurlPS’20] 107



In general, these transformations (rotation, shift, etc.) induce operators over the
space of distributions and have some group structure.

(In appendix) they show sufficient conditions for spectra of these linear operators
not containing zeros = operators themselves being invertible.

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurlPS’20]



Teaser: core results

Learning better Manipulating individual factors
one-to-one mappings with cross-domain supervision
We can get stable alignment wrt powerful We can alter a single specific attribute of real
discriminator families using normalizing flows! images using only synthetic supervision!
(NeurlPS20) (ICCV19 Oral)
Defending models against performing adversarial We can infer which attributes are unique to each
attacks on themselves improves semantic domain and modulate them in a controlled manner!
consistency! (NeurlPS19) (in submission)

Bonus: Multi-view / 3D simulation

Neural networks can be trained to perform regularized bundle adjustment to robustly estimate 3D poses
from uncalibrated multi-view RGB without 3D supervision! (CVPR22)

We generated one of current de-facto standard datasets for synthetic-to-real adaptation (Syn2Real)



Task

We have synchronized multi-view RGB footage
and we want to estimate 3D human pose from it.

X no camera
calibration

X no GT 3D poses

some 2D pose annotations

image from “Learning Monocular 3D Human Pose Estimation from Multi-view Images”, Rhodin et al (CVPR18)



Overview

T

i ; Epipolar Pose
{J . 199
L ‘ 1 ‘1;‘ \ ‘{? ‘1l \
T~ BAVAUN/
| @O/‘;.\
: R
| .
| P &
I ;
- ov
|
|
| & \
_ Classical Solu'(ion Our Solution - Initialization Our Solution — Refinement
(AniPose Bundle Adjustment) (Average Epipolar Pose) (Neural Bundle Adjustment)

“MetaPose: Fast 3D pose from multiple views without 3D supervision”, Usman, Tagliasacchi, Saenko, Sud (CVPR22)



Human3.6M

PMPJPE| NMPIPE| Atr

Method [s]
4 2 4 2 3
Isakov et al. [19] 20 - - - -
AniPose [25] w/ GT 75 167 103 230 7.0
Rhodin et al. [37] 65 - 80 - -
CanonPose [44] 53 - 82 - -
EpipolarPose (EP) [27] 71 - 78 - -
Igbal et al. [18] 55 - 66 - -
MetaPose (S1) 74 87 83 95 0.2

MetaPose (S1+S2) 32 44 49 55 03

SkiPose

PMPJPE| NMPIPE| A¢
6 2 6 2 4
AniPose [25] w/ GT 50 62 221 273 7.0

Method

Rhodin et al. [37] - - 85 - -
CanonPose (CP) [44] 90 - 128 - -
MetaPose (S1) 81 86 140 144 0.3

MetaPose (S1+S2) 42 50 53 59 04

“MetaPose: Fast 3D pose from multiple views without 3D supervision”, Usman, Tagliasacchi, Saenko, Sud (CVPR22)



https://docs.google.com/file/d/15FosXHvsc8uydIP4v4sMUHE1RYhWCNcf/preview

® motorcycie-0 ’83
" 1

“Syn2Real: A New Benchmark for Synthetic-to-Real Visual Domain Adaptation”, Peng, Usman, ..., Hoffman, Saenko



Solution: Image Translation / Domain Alignment

minimize
“distinguishability”

d(

114




[l have all the other work]



[downstream model]



takeaway



