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Presentation Plan
1. Problem and motivation

2. Existing solutions and possible failure modes

3. Tools for analysing these failure modes in prior work

a. “Generalization and Equilibrium in Generative Adversarial Nets” 

by Arora et al., PMLR 2017.

b. “Training Generative Adversarial Networks with Limited Data” 

by Karras et al., NeurIPS 2020. 

c. “Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs” 

by Galanti et al., JMLR 2021. // 2017-2021



F
✓is a dog
✓same coat color
✓same pose
   ...

Source Samples (Cats) Target Samples (Dogs)

Task

3



Source Distribution Target Distribution

Ground truth 1-to-1 cross-domain mapping.

F
GT

P
A

P
B

Task
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Source Samples Target Samples

Task

Goal:
reconstruct F from 
unpaired samples
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Task
1D manifold

2D manifold



Source Samples Target Samples

How to find a good F?

A = {a
i
}

F

B = {b
j
}

Translated Source Samples

F(A) = {F(a
i
) : a

i 
∈ A}

minimize
statistical
distance 
d(F(A), B)
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Source Samples Target Samples

How to find a good F? - what we expect

F
t=0

Translated Source Samples

HIGH
statistical
distance
d(F(A), B)

LOW
statistical
distance
d(F(A), B)

F
t=T

… optimizing F ...
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Why care about this problem?

This is an unsupervised generative problem that has GT outputs!

As a result, we are learning a neural data model, but can reason 

about its correctness and the prediction error vs GT outputs (e.g. L2).

In contrast, 

- in GANs - there are no expected outputs

- in classification/regression - often no need to model data. 
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Presentation Plan
1. Problem and motivation

2. Existing solutions and possible failure modes

3. Tools for analysing these failure modes in prior work

a. “Generalization and Equilibrium in Generative Adversarial Nets” 

by Arora et al., PMLR 2017.

b. “Training Generative Adversarial Networks with Limited Data” 

by Karras et al., NeurIPS 2020. 

c. “Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs” 

by Galanti et al., JMLR 2021. // 2017-2021



Source Samples Target Samples

What could go wrong? 
I: The statistical distance is too weak

A = {a
i
} B = {b

i
}

Translated Source Samples

F(A) = {F(a
i
) : a

i 
∈ A}

LOW
statistical
distanceF

t=0
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What could go wrong? 
I: The statistical distance is too strong

AS HIGH AS 
JUST NOISE
statistical
distance

F

LOW
statistical
distance
d(F(A), B)
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What could go wrong? 
II: The stat distance is too sharp (hard to optimize)

EQUALLY
HIGH

statistical
distance

F

EQUALLY
HIGH

statistical
distance

d(F(A), B)

F
13

GT F



What could go wrong? 
III: The final mapping is nonsensical

LOW
statistical
distance

F
t=T

NO SEMANTIC 
CORRESPONDENCE
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Selected prior work

1. “Generalization and Equilibrium in Generative Adversarial Nets” by Sanjeev 

Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang, Proceedings International 

Conference on Machine Learning (PMLR) 2017.

2. “Training Generative Adversarial Networks with Limited Data” by Tero Karras, 

Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila;  Advances in 

Neural Information Processing Systems (NeurIPS) 2020. 

3. “Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs” by Tomer 

Galanti, Sagie Benaim, Lior Wolf; JMLR 2021. // paper series (2017-2021)
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Introduce important theoretical tools to understand related problems:

- Chernoff bound and ε-cover method to estimate sample complexity of 

adversarial statistical distances 

- ε-approximate Nash equilibrium to analyse the existence of the solution to 

the adversarial alignment problem

- Markov operators and group structure of augmentations to estimate 

statistical distances between distributions under data augmentations

- unsupervised bias-variance tradeoff and Rademacher complexity to relate 

the prediction error with the alignment error and the complexity of the 

function class

Why these papers?

16
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Other background papers
I also use there papers / books to provide context / refer for proofs

- “Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory” by 

Lipton & Young, STOC’94

- “Foundations of Machine Learning” Mohri, Rostamizadeh, Talwalkar, 2nd Edition, 2018

- “Towards Principled Methods for Training Generative Adversarial Networks”, Arjovsky & 

Bottou, ICLR’17

- “Stabilizing Training of Generative Adversarial Networks through Regularization”, Roth et al, 

NeurIPS’17

- “Which Training Methods for GANs do actually Converge?”, Mescheder et al., ICML’18

- “Kernel of CycleGAN as a Principle homogeneous space”, Moriakov et al., ICLR’20

- “Guiding the One-to-One Mapping in CycleGAN via Optimal Transport’, Lu et al., AAAI’19



Other background papers
I have “backup slides” covering these papers as well in the end:

- "Table for estimating the goodness of fit of empirical distributions", Smirnov, Annals of 

Mathematical Statistics ’48 - introduces KS-test

- “A Kernel Two-Sample Test”, Gretton et al, JMLR’12 - introduces MMD test

- “Permutation tests for equality of distributions in high-dimensional settings”, Hall & Tajvidi, 

Biometrika’02; “Multivariate Generalizations of the Wald-Wolfowitz and Smirnov 

Two-Sample Tests”, Friedman & Rafsky, Ann Stat 79 - multivariate extensions of 

non-parametric tests

- “Wasserstein GAN” Arjovsky et al, ICML’17 - introduces WGAN objective

- “Are GANs Created Equal? A Large-Scale Study”, Lucic et al., NeurIPS’18; “Pros and Cons of 

GAN Evaluation Measures”, Ali Borji, arxiv’18;  “Improved Precision and Recall Metric for 

Assessing Generative Models”, Kynkäänniemi et al., NeurIPS’19 - introduces FID, KID, IS, 

GAN-F1 score and compares them
18



Other background papers
I have “backup slides” covering these papers as well in the end:

- “On the Decreasing Power of Kernel and Distance based Nonparametric Hypothesis Tests in 

High Dimensions”, Ramdas et al., AAAI'15 - shows that with a “fair alternative” MMD test 

has exponentially low power in higher dims

- “Revisiting Classifier Two-Sample Tests”, Lopez-Paz et al., ICLR’17 - compares the test power 

of the GAN-like objective to MMD/KS/other test

- “Reducing Noise in GAN Training with Variance Reduced Extragradient”, Chavdarova et al., 

NeuIPS’19
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How to choose the statistical distance?

(with exponentially high probability over the choice 
of m samples as the number of samples increases)

Def 1: the statistical distance d(A, B) “generalizes”

Lem 1: JSD and Wasserstein distances “do not generalize”!

⇒

(for q = 0 almost everywhere) (prob of all pairs of points in A and B being at least 1.2 
away from each other does not decay fast enough with m)

20[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al., PMLR 2017]



How to choose the statistical distance?
Def 2: F-divergence wrt ϕ

Lem 2: 

21

Proof: 
a) all D weights can be approx. with err. < e 
using a “covert set” of size ∼ K = [log(1/e) / e]
=> worst cast D approx. error < e * L
b) for any “single fixed” D the est. error < A

D(X) outputs for 
different weights

[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al., PMLR 2017]



How to choose the statistical distance?
Def 2: F-divergence wrt ϕ

Lem 2: 

22

D(X) outputs for 
different weights

[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al., PMLR 2017]

what is the 
population of your 

neighborhood?P(person makes a bad guess 
about the population of their 

neighbourhood) is low 



⇒(+ union bound) for        the error is <ε/4 and

How to choose the statistical distance?

[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al., PMLR 2017]

Def 2: F-divergence wrt ϕ

Lem 2: 

ε-net method on discr weights

|X| = 

⇒

- Chernoff bound for

applied to a single discriminator from the ε-net (bounded outputs!)

* |X|
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Does the minimum exist?

2

1

-2

-1

D=DA D=DB

F=FA

F=FB

min
F 

max
D
 D(X) - D(F(Y))

The “pure” equilibrium might not 
always exist, but a mixed strategy that 
yields an equilibrium always exist! 
[Nash ‘50; Glicksberg ‘52]

24

min h(F)
P(F)

P(D)

.7

.3

2

1



Proof: 
1) an infinite mixture of G

i
(z) = x

i
 , x

i 
∼ P(X) is mixed Nash eq.

2) K-sized epsilon-net over samples x
i
 and params of D gives 

small error => “subsampled” G’ and D’ are in ϵ/2-eq
3) can approximate “subsampled” G’(x) with a neural G’’(x) 
that “mixes” outputs of G

i
 with weights produced by a neural 

ϵ/2-approx. “1-vs-K indicator” h(z), i.e. G’’(x) = ∑
i
 G

i
(z) * h

i
(z)

25[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al PMLR 2017]
[“Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory” by Lipton & Young, STOC’94]

Def 3: ϵ-approximate equilibrium Th: if p-parameter (k-1)-layer 
network can generate/discriminate 
each sample => ∃ k-layer G and D 
with A parameters that are in ϵ-eq



Proof: 
1) an infinite mixture of G

i
(z) = x

i
 is Nash equilibrium

2) ε/4LL’Lϕ-net (of size T) over params of G and D gives (with high 
prob) error <ε/2 => “subsampled” G’ and D’ are in ϵ-eq
3) a 2-layer network h(z) can δ-approx. a “multi-way step fn”
4) we build new G that “mixes” outputs of G’

i
 with weights produced 

by h(z), it is ε/2-away from “true mixture of G
i
’s”

26second half of the proof is based on 
[“Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory” by Lipton & Young, STOC’94]



Takeaway

1. The “sample GAN loss” reasonably quickly converges to its “true” value.

2. Jensen-Shannon and Wasserstein distances do not.

3. For large networks ϵ-approximate equilibriums exists.

Comments

1. No point in approximating JSD, Wasserstein (and MMD) precisely 

because their sample estimates are too far from actual values!

2. No point in using them for evaluation either (in higher dimensions)!

3. We are still optimizing for “exact” not “ϵ-approximate” equilibriums.

4. Those equilibriums might also be very hard to get into!

[“Generalization and Equilibrium in Generative Adversarial Nets” by Arora et al., PMLR 2017] 27



28[“Towards Principled Methods for Training Generative Adversarial Networks”, Arjovsky & Bottou, ICLR’17]

GAN-loss is pretty bad optimization-wise

(with generator fixed after X epochs)

But noise might help:
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[“Stabilizing Training of Generative Adversarial Networks through Regularization”, Roth et al, NeurIPS’17]
[“Instance Noise: A trick for stabilising GAN training”, Ferenc Huszár, inference.vc]

but requires figuring out a good annealing schedule

Instance noise in the discriminator might help.  
Closed-form regularizer exist.



30[“Which Training Methods for GANs do actually Converge?”, Mescheder et al., ICML’18]

A “toy GAN problem” confirms it.
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Let’s extend to arbitrary augmentations.
Assume augmentation T(x) randomly flips an image by [0, 90, 180, 270] and we apply 
T(x) “as instance noise” before passing them to D(x) to make images “less separable”.

T
D(x)

“good” generated images real images

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T

generated images with wrong original orientation

D(x)
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Here is what you get - “leaking augmentation”.

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T(x) is flip T(x) is color shift
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How to avoid “leaking augmentation”?

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

T
D(x)

generated
images

real 
images

P T(P) QT(Q)

We want T(x) such that T(P) = T(Q) ⇔ P = Q ,
i.e. we want an invertible operator “T: distribution 🠖 distribution”.

Not same as an invertible augmentation T(x)! 
Example: T(P) = P ∗ Gaussian(0, 1), i.e. T(x) = x + ε, ε ~ N(0, 1).

T

Q P T(Q) T(P)
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Markov operator

In this case, the 
“T: distribution -> distribution”

is just a linear operator “T: Δ
3
 -> Δ

3
”.

p = (0.1, 0.1, 0.8)

q = (0.8, 0.1, 0.1)

T = 
0.6   0.2   0.2
0.2   0.6   0.2
0.2   0.2   0.6

invertible! sums 
over rows to 1 

T = 
1.0   1.0   1.0
1.0   1.0   1.0     * ⅓
1.0   1.0   1.0

not invertible! sums 
over rows to 1 

X = 1D random variable, supp(X) = {0, 1, 2}
P(X) = a vector in R3 that lies inside Δ3

in observation space the augmentation function is random
e.g. f(1) = {=0 with p=0.2, =1 with p=0.6, and =2 with p=0.2}

deterministic linear 
operator in the 

distribution space

not invertible!

in observation space 
f(x) is either {0, 1, 2} 

with equal probabilities
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We want T(x) such that T(P) = T(Q) ⇔ P = Q ,
i.e. we want an invertible operator “T: distribution 🠖 distribution”.

Example: T(P) = P * N(0, 1), i.e. T(x) = x + ε, ε ~ N(0, 1), 
i.e. T[P](x) = [P * N(0, 1)](x),   T-1(T(P)) = P,   T-1(W) = deconv(W)

P

Q

T[P]
T[Q]

this is like an infinite dimensional vector
and the operator T is also infinite dimensional

Markov operator

T[P]

T[Q]
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How to test invertibility of an infinite-dimensional 
operator?

General statements:
1. A composition of invertible operators is invertible (i.e. a sequence of 

“good”/”non-leaking” augmentations is still good)
2. A linear combination of invertible operators is not necessarily 

invertible [½(T
1
 + T

2
)](P) means randomly choosing between 

augmentations T
1
 and T

2
 and

 
applying it to a single sample from P)

P

T
1
[P](x) =  P(x-1)

T
2
[P](x) =  P(x+1)

T
1
(P) T

2
(P) ½(T

1
(P) + T

2
(P))

= [½(T1 + T2)](P)

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]



if we set

e.g. {0, 90, 180, 270} img rots
= not just “any” stochastic matrix
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How to test invertibility of an infinite-dimensional operator?

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

Inverse operator exists if there are no zeros in operator’s Fourier spectre.
Solution: uniform but with higher probability of G0 like [0.28 0.24 0.24 0.24] - has no zeros in spectrum!
Essentially T = [(1-α) * Uniform + α * Identity] - e.g. almost like a regularization.
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How to test invertibility of an infinite-dimensional operator?

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

Inverse operator exists if there are no zeros in operator’s Fourier spectre.
Solution: uniform but with higher probability of G0 like [0.28 0.24 0.24 0.24] - has no zeros in spectrum!
Essentially T = [(1-α) * Uniform + α * Identity] - e.g. almost like a regularization.

T
D(x)

“good” generated images real images

T

generated images with wrong original orientation

D(x)

both have slightly more “upright” faces!

left does not have slightly more “upright” faces!



39

How to test invertibility of an infinite-dimensional operator?

Other cases:
1. Non-compact discrete groups (integer shift): also “non-zero Fourier”
2. For continuous groups (e.g. rotations): also “non-zero Fourier” (use Haar 

measure over that groups under the integral); 
3. Additive pixel noise: “non-zero Fourier” of the noise kernel
4. Cropping / blitting / “projection”: requires P(identity) > 0 

Assume ∃y≠z s.t. Ty = Tz, e.g. T(y-z) = 0, e.g. Tx = 0.

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

≥ 0 ≥ 0

invertible if p0 ≠ 0
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So how do we use it?

Q P Dacc = 0.9

T(Q) T(P)
T = T

1
○ T

2
○ T

3 
...

 

Dacc = 0.55
(1-p)*Q + p*T(Q)

(1-p)*P + p*T(P) Dacc = 0.8
[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]
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Does it help? - yes!

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

real train / real val / generated
D(x) scores trained on 20k samples

w
\o

 a
ug

m
en

ta
tio

n
w

ith
 a

ug
.

FID(train step) for 
different amount of real data
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Does it help? - yes!

[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]



43[“Training Generative Adversarial Networks with Limited Data”, Karras et al., NeurIPS’20]

Takeaway

1. Regularizing the discriminator with augmentations helps.
2. But it has to be done in a way that does not “leak” into generated images.
3. For a wide variety of transformations, applying them with a fixed 

probability “does not leak” into generated examples.

Comments
1. All these methods still require careful parameter annealing.
2. As a result we can not reason about the convergence of an objective 

because there is no single objective! (we change it as we train)



(d) “identity loss”

GF 
(applying Y🡒 X 
mapping to X)
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CycleGAN overview

G

F
G

F

[“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, Zhu et al., ICCV’17]



45
[“Kernel of CycleGAN as a Principle homogeneous space”, Moriakov et al., ICLR’20]
[“Guiding the One-to-One Mapping in CycleGAN via Optimal Transport’, Lu et al., AAAI’19]

CycleGAN trained to map MNIST train split to the MNIST test split.

How to reason about the complexity of the CycleGAN?

1D-to-1D
A

B

X Y
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[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]
[“Estimating the Success of Unsupervised Image to Image Translation”, Benaim et al., ECCV’18 ]
[“The role of minimal complexity functions in unsupervised learning of semantic mappings”, Galanti et al., ICLR’18]

B

A

y(x)
1

B

A

7
prediction error < 

smallest unsupervised alignment error 
+ smallest approximation error in H 
+ the variance between functions 

minimizing the alignment loss.

B

A

2

H

minimal 
unsupervised error

small 
unsupervised error
but far from h1

y

B

A

5

h2

B

A

3

h1

B

A

4

h1

How to bound the unsupervised alignment error?

B

A

6

h2
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How to use this bound?
A given choice of hyperparameters is evaluated as follows:

1.        - we minimize the “GAN loss” to get “the first best” h1

2.         - then pick the “second best” h2

3.    - and then bound the unknown GT error

...

How to bound the unsupervised alignment error?

R - pred error; ρ - alignment error; D
A
 - distribution; S

A
 - dataset; P

k 
- hypotheses with “low” alignment error

[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]
[“Estimating the Success of Unsupervised Image to Image Translation”, Benaim et al., ECCV’18 ]
[“The role of minimal complexity functions in unsupervised learning of semantic mappings”, Galanti et al., ICLR’18]
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The ground truth error and the 
theoretical bound as a function 
of hyper-parameter 
optimization steps varying
- encoder and decoder #layers
- batch size
- learning rate
...

Does it help? - yes!

[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]
[“Estimating the Success of Unsupervised Image to Image Translation”, Benaim et al., ECCV’18 ]
[“The role of minimal complexity functions in unsupervised learning of semantic mappings”, Galanti et al., ICLR’18]
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[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]
[“Estimating the Success of Unsupervised Image to Image Translation”, Benaim et al., ECCV’18 ]
[“The role of minimal complexity functions in unsupervised learning of semantic mappings”, Galanti et al., ICLR’18]

domains

finite datasets

translation 
functions

single 
discriminator

discriminator
class

hyperparams a mapping 
produced by 
the learning 

algorithm
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[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]
[“Estimating the Success of Unsupervised Image to Image Translation”, Benaim et al., ECCV’18 ]
[“The role of minimal complexity functions in unsupervised learning of semantic mappings”, Galanti et al., ICLR’18]

y(x)

h(x)

∇d(y(x))
y(x) - h(x)

x



51[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]

Lem 3:

Lem 4:

Lem 7:
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y

h
2

h*

Lem 3 (Triangle inequality and the “set diameter”)

h
1

P
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DA

DB

y(x)

h(x)

d(x)

Lem 4 (Prediction Error 
via Stat. Distance and 
Discriminator Capacity)

prediction error max pred error < L

stat. distance between 
h(PA) and PB

discriminator approx error (capacity)

[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]

avg
prediction error discriminator error

stat. distance
max prediction error < L

f(x) - f(y) = <∇f(x), x - y> + … 
= ||x - y||2 + <∇f(x) - (x - y), x - y> + 
...



54[“Foundations of Machine Learning” Mohri, Rostamizadeh, Talwalkar, 2nd Edition, 2018]

and

sup g - a function with the largest deviation of its 
value from average across possible splits S, S’
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Lem 7 (Sample complexity)



56[“Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs”, Galanti et al., JMLR’21]

Lem 3:

Lem 4:

Lem 7:



The prediction error of the unsupervised image translation method (wrt the 
ground truth output) can be bounded via 
- minimal statistical distance attainable by the network and 
- variance between solutions that attain that lowest statistical distance. 
And this bound actually works in practice!

Comments
1. Regression CNNs can fit almost random (x,y) pairs - can I2I networks fit 

random (x1, x2) pairs? if so why doesn’t R[h1, h2] explode?
2. The empirical Rademacher complexity of the discriminator class seems 

related to the “expected statistical distance between random splits of 
that dataset”?

57

Takeaway
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Recap

1. “Neural GAN distances” between datasets seem to have have better 
sample complexity than “classical” distances. We used an ϵ-net over NN 
weights and Chernoff bound on each element of ϵ-net to show that.

2. These neural distances can be “smoothened” via instance noise and 
augmentations to make gradient descent iterations more stable. By 
treating random augmentations as Markov operators we showed that in 
most cases skipping augmentations with fixed probability ensures that 
the neural distance remain “non-leaking” even under augmentations.

3. The prediction error of the unsupervised alignment method can be 
bounded via the variance between solutions attaining similar GAN loss.
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Thank you for your time!

Main papers:

1. “Generalization and Equilibrium in Generative Adversarial Nets” by Sanjeev 

Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang, Proceedings International 

Conference on Machine Learning (PMLR) 2017.

2. “Training Generative Adversarial Networks with Limited Data” by Tero Karras, 

Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila;  Advances in 

Neural Information Processing Systems (NeurIPS) 2020. 

3. “Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs” by Tomer 

Galanti, Sagie Benaim, Lior Wolf; JMLR 2021. // paper series (2017-2021)


