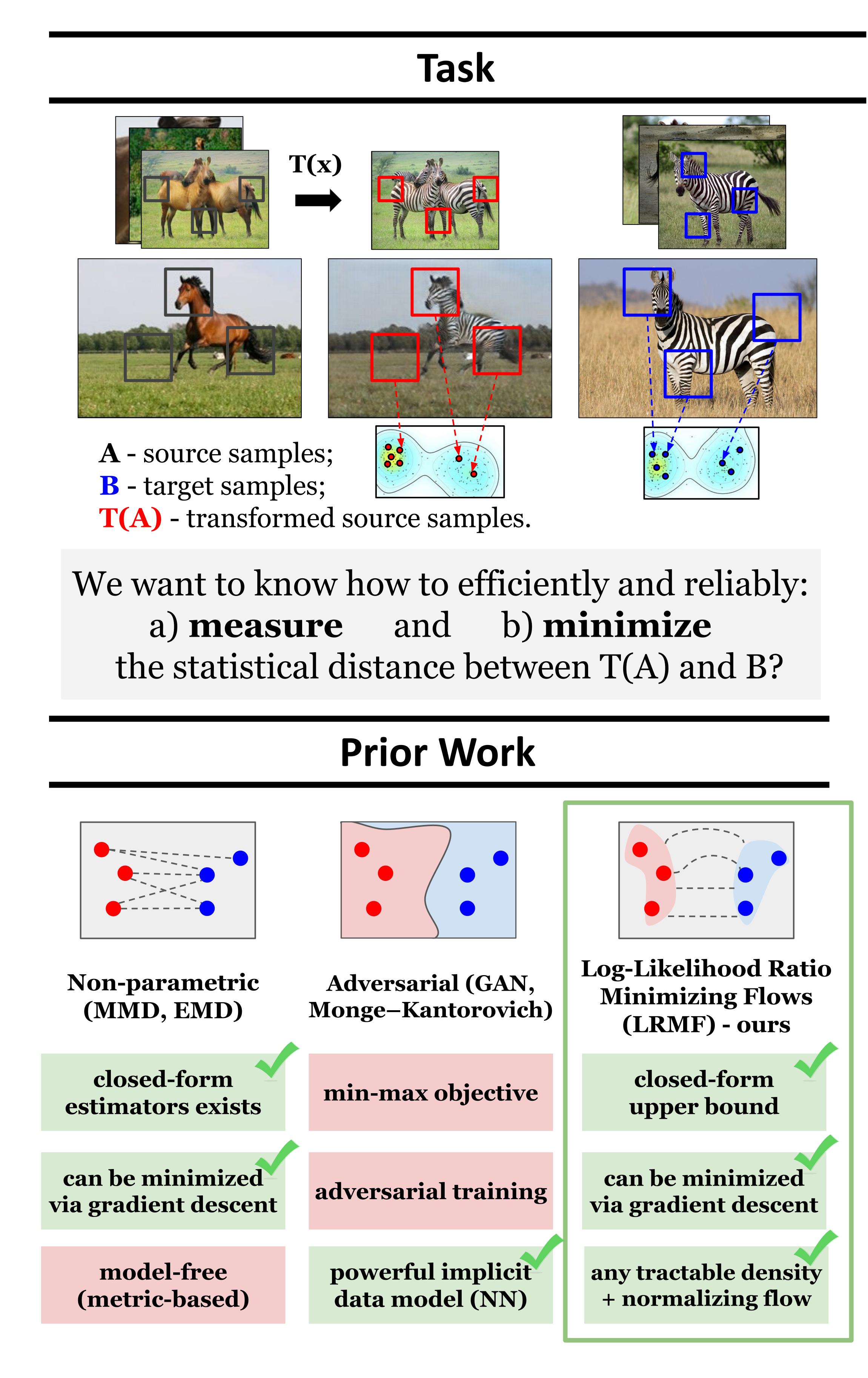


Visualizations, paper and code are available at: ai.bu.edu/lrmf



Log-Likelihood Ratio Minimizing Flows Towards Robust and Quantifiable Neural Distribution Alignment

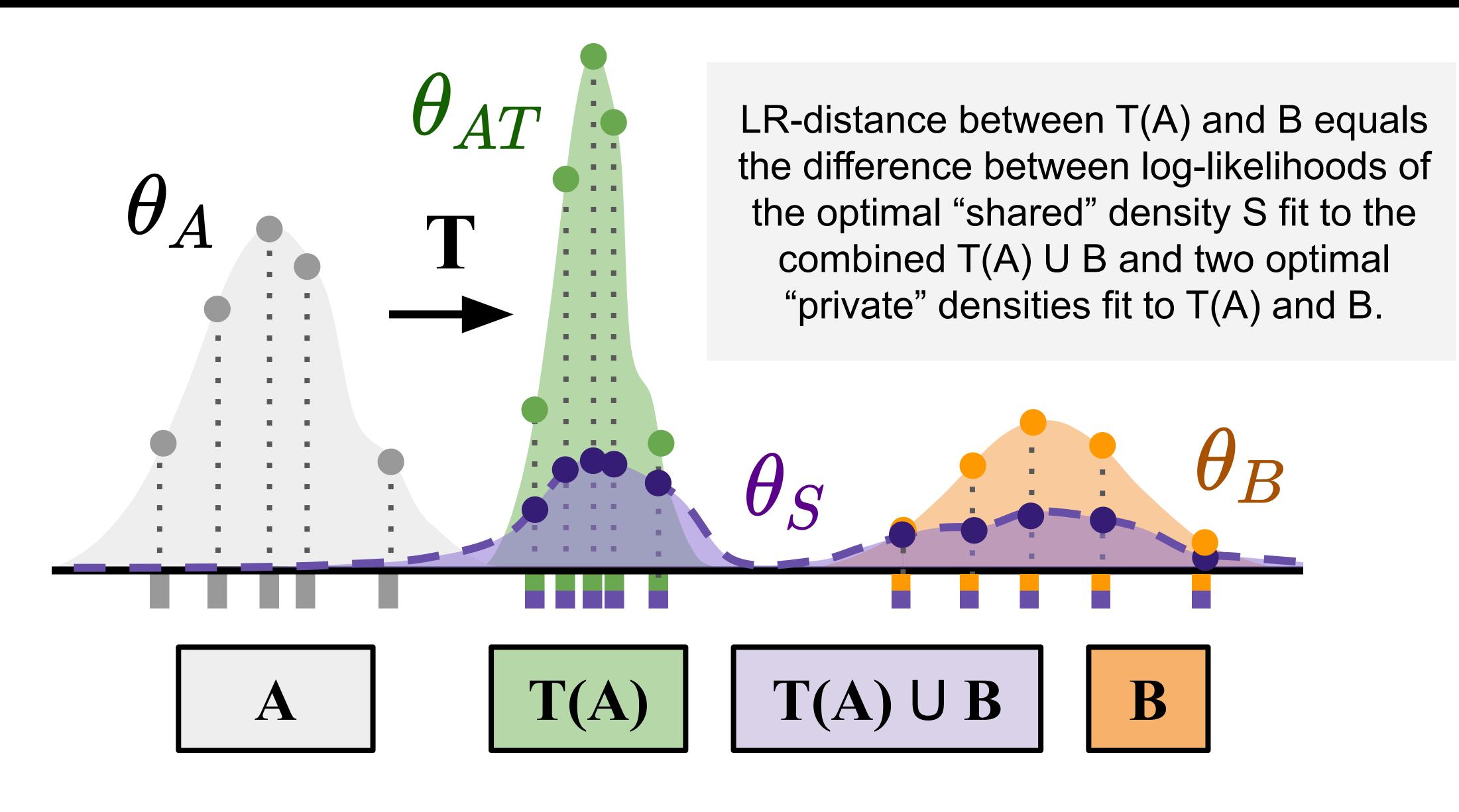
Ben Usman

Avneesh Sud

usmn@bu.edu

asud@google.com

Proposed Method: LRMF



Observation 1 (\Rightarrow Lemma 2.1):

The likelihood of the "shared" model (S) trained on the "combined" dataset is always **lower** than likelihoods of "private" models trained on each dataset alone (AT, B), **unless** both datasets are from the **same** distribution.

Observation 2 (\Rightarrow Lemma 2.2):

The maximum likelihood of the transformed dataset T(A) can be **approximated in closed-form** if the maximum likelihood of A is known and T(x) is a normalizing flow.

Conclusion (\Rightarrow Theorem 2.3):

We can find the optimal flow T* that minimizes the adversarial LR-distance (the "gap" between shared private likelihoods) by minimizing a **non-adversarial LRMF**:

 $|\mathcal{L}_{ ext{LRMF}}\left(A,B,\phi, heta_{S}
ight) = -\log\det|
abla_{x}T(A;\phi)| - 1$ $-\log P_M(T(A;\phi);\theta_S) - \log P_M(B;\theta_S) + c(A,B)$

Nick Dufour

Kate Saenko

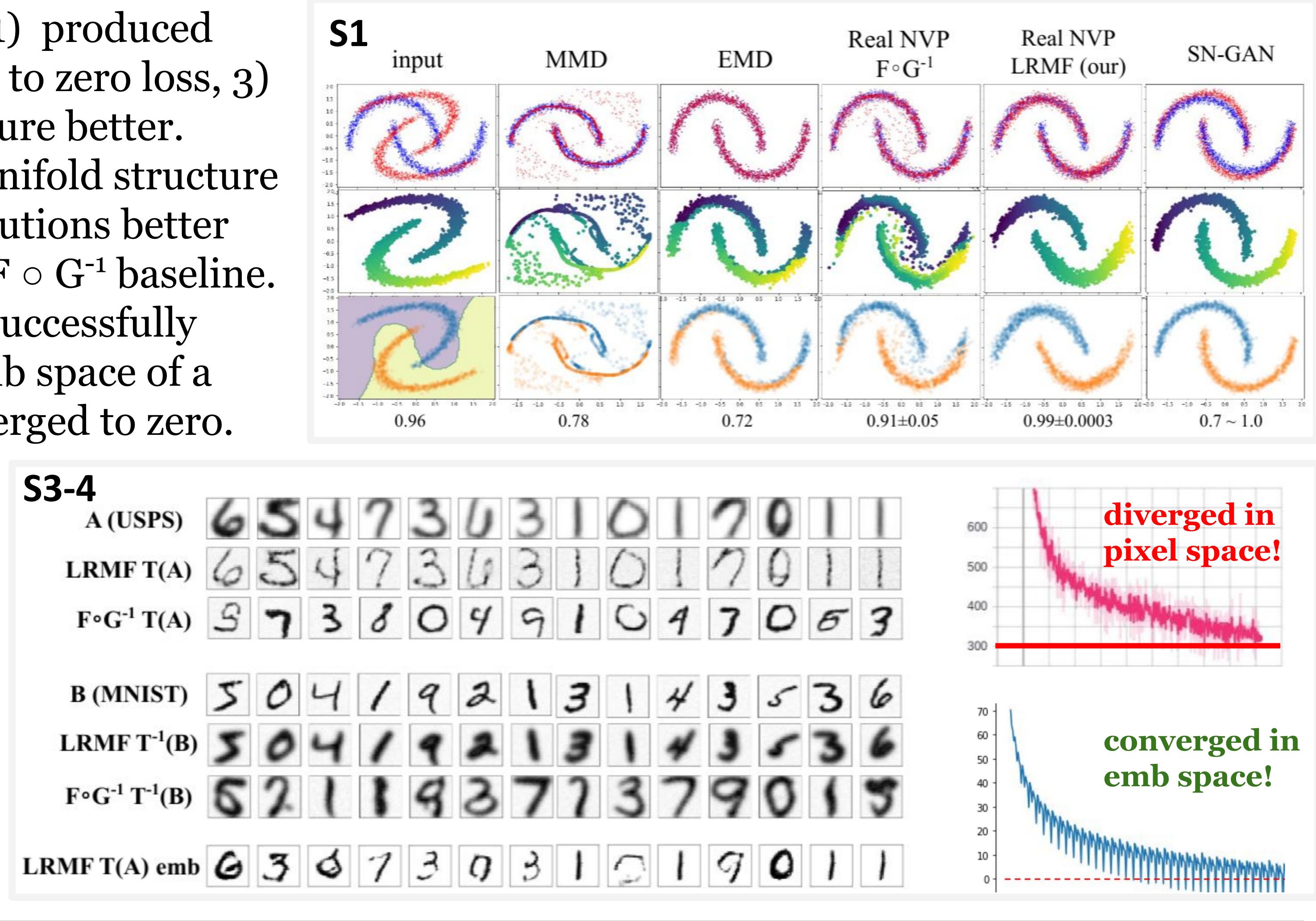
ndufour@google.com

saenko@bu.edu

- 1. Setup 1: A RealNVP LRMF: 1) produced good alignment, 2) converged to zero loss, 3) preserved the manifold structure better. **2. Setup 2:** It preserved the manifold structure of aligned mesh vertex distributions better then our AlignFlow-inspired $F \circ G^{-1}$ baseline. **3. Setup 3:** A RealNVP LRMF successfully aligned digit images in the emb space of a VAE and the LRMF loss converged to zero. 4. Setup 4: A GLOW LRMF **S3-4** failed to converge, and the A (USPS) non-zero final loss value explicitly indicates this. $F \circ G^{-1}(A)$ T(A)**S2** A

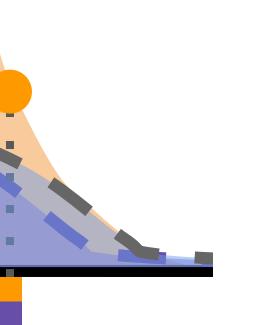
- If A and B are far apart, any planar T(x; b) does not change the likelihood of T(A) or S, so the LRMF objective is locally constant w.r.t. the transformation parameter b.

Results



Special Cases and Limitations

1. **Special cases: 1)** Gaussian LRMF \Leftrightarrow matching mean and variance; **2)** minimizing an infinite capacity LRMF loss \Leftrightarrow training a GAN with a closed-form D(x) \Leftrightarrow minimizing Jensen-Shannon divergence.



2. Limitations: transformation gradients of LRMF between two gaussian mixtures vanish as distribution means become further away from each other:

 $|[\partial \mathcal{L}_{ ext{LRMF}}(A+\mu,B,\phi, heta)/\partial \phi]|| \propto \exp(-\mu^2)|$