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1. Domain Adaptation 4. Our solution: replace min-max with min-min by dualizing logistic discriminator
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Fig 1: Kernel density estimator of target accuracy values on last epoch.
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Distance 1s measured as maximum likelthood of separating classifier: % 5 N | 5. Dual minimization objective makes more
| | E‘J | (21.5%) hyperparameter combinations result in
mindgan (4, B, f) = minmax £(0 | A x {0} U By x {1}) Yoo E I N T O B T models with higher then initial target accuracy.
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Fig 2: Evolution of target accuracy over epochs on MNIST-to-SVHN. . . .
3. But gradient descent is not well-suited for min-max problems, moreover we 6. On a synthetic point cloud matching task, the
have no convergence validation procedure since optimal loss value is not ‘ “primal” discriminator decision boundary spins
necessarily smallest. g around data points, whereas both linear and kernel
Examole: Gradient descent fails fo solve the dual approaches lead to stable solutions. We argue
<addl ep point problem ffx, 1) = xy. Red line that this 1s due to discriminator being defined
X, V = . . .. .
presents a trajectory of the gradlent descent 1f B Kﬁﬁ?ﬂy by POt \pQsilighs Pl Jeallgmers
vector field (-y, x) is used at each iteration. Blue ~ '
. . g
Enfc? are gxampley of yectors;irqm-thiS\ybelor 2 7. Future work: can we parameterize k& (similarity)
o A and & (alignment) so that they correspond to a

Fio 3: Primal di d oubhd i dual d neural discriminator?
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