Lecture 15:
Unsupervised Deep Learning (llI)

Applications of Generative Models; Normalizing Flows



Outline

1. Some applications of convolutional autoencoders and GAN

a. Image-to-Image Translation with Conditional Adversarial Nets
b.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows

a. Change of variable formula
b. Planar and radial flows

C. Real NVP

d. GLOW

e. FFJORD

f.

Likelihood vs probability
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Recap: GANs

choose theta such that the
observed dataset could have been
generated by model(theta)

we learn to sample

4

model(x, theta) = P(x | theta)
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Recap: GANs

choose theta such that the
observed dataset could have been
generated by model(theta)

we learn to sample

we learn to compute x’ ~ model(theta)
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Recap: GANs
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Example Application 1:
Improving outputs of supervised image-to-image models

Labels to Street Scene Labels to Facade BW to Color

input output

Day to Night Edges to Photo

output input output input output

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]



Example Application 1:
Improving outputs of supervised image-to-image models

Encoder-decoder

Aot

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]



Example Application 1:

Improving outputs of supervised image-to-image models

€T —>

Encoder-decoder

—>—>|:|—>—>

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)
A: These losses assume that multiple outputs are independent.

Y. =f(X theta) t e, e ~N(0,I) => L2]loss

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]



Example Application 1:
Improving outputs of supervised image-to-image models

Input Ground truth L1

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]



Example Application 1:
Improving outputs of supervised image-to-image models

Input Ground truth L1 cGAN L1+ cGAN

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]



Example Application 1:
Improving outputs of supervised image-to-image models

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.



Example Application 1:
Improving outputs of supervised image-to-image models

Takeaway:

if the output domain has some structure (i.e. an image)
adversarial losses force the model to follow that structure



Example Application 1:
Improving outputs of supervised image-to-image models

Takeaway:

if the output domain has some structure (i.e. an image)
adversarial losses force the model to follow that structure

adversarial losses explicitly penalise
outputs that look “too different from
outputs in the training set”

— —

X
L]
N

plain regression model is encouraged
to “interpolate” outputs if uncertain
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Example Application 2:
Enabling unsupervised image-to-image training

Monet <_ Photos _ __ Zebras T Horses_ Summer > Winter

A

Phtograph ‘ Monet Van Gogh Cezanne o Ukiyo-e

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]



Example Application 2:
Enabling unsupervised image-to-image training

Paired » Unpaired
Li Y :

i
()

Figure 2: Paired training data (left) consists of training ex-
amples {z;,y; }Y_,, where the correspondence between x;
and y; exists [227]. We instead consider unpaired training
data (right), consisting of a source set {z;}Y, (z; € X)
and a target set {y; };—1 (y; € Y), with no information pro-
vided as to which z; matches which y;.

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]



Example Application 2:
Enabling unsupervised image-to-image training

. GAN losses
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“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]



Example Application 2:
Enabling unsupervised image-to-image training

summer Yosemite — winter Yosemite

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]



Example Application 2:
Enabling unsupervised image-to-image training

Takeaway:

adversarial losses enable discovery of latent
correspondances in the structure of two datasets

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]



Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



Example Application 3:
Cross-domain attribute manipulation

original

manipulated

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]





https://docs.google.com/file/d/1t6QFkqWAS6RcFhB_ac5I6YoTbbR8SdFC/preview

Example Application 3:
Cross-domain attribute manipulation

We trained a disentangled autoencoder: E
we split the encoded vector into two parts
and force one part to represent the attribute
we manipulate (mouth) and other attributes
(hair, mic, ...).

____________
all other
attributes mOUth

disentangled\ l embeddings

e e o o o e

How?

\ ¢ Zleezclloder shared
synthetic ¢ \ encoder

\ ¢ decoder

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]




Example Application 3: - S
Cross-domain attribute manipulation 0
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“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



Example Application 3:
Cross-domain attribute manipulation

.. with supervised losses on
synthetic data ...

A
—

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



Example Application 3:
Cross-domain attribute manipulation

... with GAN losses ...

GAN GAN

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



Example Application 3: any [l > oyl
Cross-domain attribute manipulation .

(]
... and compositional constraint losses \ \ /
to ensure that all components are used. b e
Lot Lo
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“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]




Example Application 3:
Cross-domain attribute manipulation

Takeaway:

adversarial losses enable “forcing” the model to store
information necessary for reconstructing
specific “aspects” of the input image
at specific dimensions of the latent code

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]
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How to train a data model from positive samples only?

If we trained a neural network f(x; 6) to have high
values at our training points x, it could just shift
whatwe have  €verything upwards.

what we want

\/\ what we have We could train a GAN to generate “negative”
A

samples, but the whole procedure becomes fragile.
W what we want

We could use a model with a “fixed budget’, i.e.
an autoencoder (# points it can “remember”) or
a density models (integrates to one).



Why train a model from positive samples only?

1. Adversarial Robustness: If the input X is not from the training
distribution P(X), refuse classification

2. Detecting Data Shift: if P(X) shifted over time, retrain the model

Outlier Detection: detect abnormalities in observed data

4. “Learned” data priors: improved image synthesis or structure in
segmentation maps

W



Background: change of variable formula

p(y)

U[1,3] P(T(0.5)) = ;
=P(2)=0.5 ‘
0 y
T(x)=2x +1 I I

U[0,11 P0.5) =1

f:RoR,f(z)=2z+1

X




Background: change of variable formula

w(b)

b
f(wdu= / F(p(2))¢' (z) da.

dy
I <0
y y+dy

‘p(a ri1+r3
r1+r2+r3 dy
— >0
dx
y y+dy
p(X) dX = p(y) dy X x+dx

p(y) = p(x) det | (dT-(y)/dy) |

log p(y) = log p(x) + log det | (dT"'(y)/dy) |



Background: change of variable formula

p(y)

U[1,3] P(T(0.5)) =
=P(2)=0.5

Tx)=2x+1 I I
T (y)=y/2- %
dT(y)/dy = %
ufo,11  P0.5)=1

Py(y) = Py (T (y)) * det | (dT'(y)/dy) | ol L))/
p(y) =1[0<(y/2-5)<1]*% 0 1
=I[1<y<3]*%

J:RoR, f(z)=22+1
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Normalizing flows for density estimation

like shuffling a sand castle
- we move sand around to
increase the amount of
send near data points, but
the total amount of the
sand stays constant




Normalizing flows for density estimation

P(T(x))

..........................

Vol( T(B(x)) )

<;I( T(B(x)) ) = det |V T(x)| *
(x)

- B ¥ P.(x; T) = P(T(x)) *det | V T(x) | * Vol( B(x) )
B(x)
let’s solve the problem “backwards”



Normalizing flows for density estimation

T(x)

Low
probability
areas are
“stretches”

%ol( T(B(x)) ) =det |V T(x)| *

(x)

P,(x; F) = P(T(x)) " det| V T(x) | * Vol( T(x) )



In order to define a normalizing flow model we need

1. A one-to-one mapping F(x,0): R" -R"
2. F1(x,0)
3. det[Jac F(x,0)]

K
81’1 8:1:,1
of of
J= | — ¢ o5 - X
82131 Ba:n : ' '
O fm O fm
- (9:131 03711 -



Planar Flow
f(z) =z +uh(wlz + ), (4)

with u, w € R? and b € R and h an element-wise non-linearity. Let ¥(z) = b’ (w''z + b)w. The
determinant can be easily computed as

det ﬁ

52| = 11+ uTz/)(z)l . (5)

We can think of it as slicing the z-space with straight lines (or hyperplanes), where each line contracts or
expands the space around it, see figure 1.

Radial Flow
f(z) =z + Bh(a,r)(z — 20), (6)

with 7 = ||z — Zg||2, h(a, ) = O%Lr and parameters zg € RY o € R, and 8 € R.



Unit Gaussian

Uniform

Planar
K=2 K=10
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zx = fxo---o fi(zo), 2o~ qo(zo),

Ofr

det
0741

zx ~ qx(zx) = qo(2o) H
k=1

K=1

Radial
K=

to learn more complex
distributions, apply
multiple flows in a row



Real Non-Volume Preserving Flows (R-NVP)

Y1k = Z1:k;s “affine coupling”
Yii+1:d = Zk+1:d © U(lek) o M(Z1;k)- z
1:k k+1:n
EA
Oz Ozy ay d—k sigma(1:k)
Pt det—:Ho'-z. i ' !
ofn  Ofn 0z 11 i(Z1:4) () e
| Oz, oz, | b= ,
y(1:Kk) y(k+1:n)

“Density estimation using Real NVP” by Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio



Real Non-Volume Preserving Flows (R-NVP)

Data space X Latent space Z
b,
Inference - APk i

¥ c
2 =1 (2) b



Real Non-Volume Preserving Flows (R-NVP)

Data space X Latent space 2
¥
A %}-__.
Inference :"y o e s
2= f (2) e ;
Generation ,
s~ Dz —

z=f"1(2)



Real Non-Volume Preserving Flows (R-NVP)

checkerboard swap “squeeze”




Real Non-Volume Preserving Flows (R-NVP)
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Glow: Generative Flow with
Invertible 1x1 Convolutions

affine coupling layer
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= very deep R-NVP
+ invertible 1x1 conv instead of swap
+ multiscale features
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Neural ODE and FFJORD

X(ty) = X,
x'(t) = f(x(t))
X(t,)="7

What if we use an
explicit method
with fixed step
size?




Neural ODE and FFJORD
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x'(t) = f(x(1)) \ SN

x(t,) = ?

If we use a
“proper solver”,
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step size.




Neural ODE and FFJORD

X(ty) = X,

X,(t) = f(X(t)) impossible!
X(t,) = ?

If we use a

“proper solver”,
we get adaptive
step size.




Neural ODE and FFJORD

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models



“Do Deep Generative Models Know What They Don't Know?”, ICLR'19
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(d) Train on ImageNet,
Test on CIFAR-10 / CIFAR-100 / SVHN

- If model P,(x) is trained on A then

for many datasets B
P,(B)>P,(A)
which is quite counter-intuitive ...

and we never see anything like B
if we sample from P(A) ..



High likelihood of X does not mean that X is likely!

A={ycR™||[y|| <e}
P(A) = [, Nioo(2;0,I)dx

- the probability of point being in set A is low

B ={z; € R™ | ||z]| < e},

E(B) = % ZwieB 10gN100 (33; O, I)

- but the mean likelihood of points from this set is high




Final takeaways

1. GANSs can help to learn and use the structure of the output domain
2. Normalizing Flows enable density estimation in higher dimensions



