
Lecture 15:
Unsupervised Deep Learning (III)
Applications of Generative Models; Normalizing Flows

Outline
1. Some applications of convolutional autoencoders and GAN

a. Image-to-Image Translation with Conditional Adversarial Nets
b. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows
a. Change of variable formula
b. Planar and radial flows
c. Real NVP
d. GLOW
e. FFJORD
f. Likelihood vs probability

Recap: GANs
choose theta such that the
observed dataset could have been
generated by model(theta)

Recap: GANs

we learn to compute
model(x, theta) = P(x | theta)

we learn to sample
x’ ~ model(theta)

choose theta such that the
observed dataset could have been
generated by model(theta)

Recap: GANs

we learn to compute
model(x, theta) = P(x | theta)

we learn to sample
x’ ~ model(theta)

choose theta such that the
observed dataset could have been
generated by model(theta)

train G “to fool” D,
train D “to catch” G

Recap: GANs

Example Application 1:
Improving outputs of supervised image-to-image models

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Example Application 1:
Improving outputs of supervised image-to-image models

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)

Example Application 1:
Improving outputs of supervised image-to-image models

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)
A: These losses assume that multiple outputs are independent.

Yi = f(X, theta) + ei ei ~ N(0, I) => L2 loss

Example Application 1:
Improving outputs of supervised image-to-image models

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Example Application 1:
Improving outputs of supervised image-to-image models

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Example Application 1:
Improving outputs of supervised image-to-image models

Example Application 1:
Improving outputs of supervised image-to-image models

Takeaway:

if the output domain has some structure (i.e. an image)
adversarial losses force the model to follow that structure

Example Application 1:
Improving outputs of supervised image-to-image models

Takeaway:

if the output domain has some structure (i.e. an image)
adversarial losses force the model to follow that structure

X Y

plain regression model is encouraged
to “interpolate” outputs if uncertain

adversarial losses explicitly penalise
outputs that look “too different from

outputs in the training set”

Example Application 2:
Enabling unsupervised image-to-image training

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

Example Application 2:
Enabling unsupervised image-to-image training

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

Example Application 2:
Enabling unsupervised image-to-image training

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

GAN losses

Supervised
losses

Example Application 2:
Enabling unsupervised image-to-image training

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

Example Application 2:
Enabling unsupervised image-to-image training

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

Takeaway:

adversarial losses enable discovery of latent
correspondances in the structure of two datasets

Example Application 3:
Cross-domain attribute manipulation

mouth rest

mouth rest

adapt

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

mouth rest

original

manipulated

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

https://docs.google.com/file/d/1t6QFkqWAS6RcFhB_ac5I6YoTbbR8SdFC/preview

disentangled embeddings

all other
attributes mouth

E E

mouth all other
attributes

GA

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

We trained a disentangled autoencoder:
we split the encoded vector into two parts
and force one part to represent the attribute
we manipulate (mouth) and other attributes
(hair, mic, …).

How?
real
decoder

synthetic
decoder

shared
encoder

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

We combined autoencoder
and cycle losses on both
domains ...

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

.. with supervised losses on
synthetic data ...

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

... with GAN losses … ….

GAN GAN

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

... and compositional constraint losses
to ensure that all components are used.

any any

Example Application 3:
Cross-domain attribute manipulation

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

Takeaway:

adversarial losses enable “forcing” the model to store
information necessary for reconstructing

specific “aspects” of the input image
at specific dimensions of the latent code

Outline
1. Some applications of convolutional autoencoders and GAN

a. Image-to-Image Translation with Conditional Adversarial Nets
b. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows
a. Change of variable formula
b. Planar and radial flows
c. Real NVP
d. GLOW
e. FFJORD
f. Likelihood vs probability

we learn to compute
model(x, theta) = P(x | theta)

we learn to sample
x’ ~ model(theta)

choose theta such that the
observed dataset could have been
generated by model(theta)

How to train a data model from positive samples only?

If we trained a neural network f(x; θ) to have high
values at our training points xi, it could just shift
everything upwards.

what we want

what we have

what we want

what we have We could train a GAN to generate “negative”
samples, but the whole procedure becomes fragile.

We could use a model with a “fixed budget”, i.e.
an autoencoder (# points it can “remember”) or
a density models (integrates to one).

what we have

Has to integrate to 1 for any theta =>
automatically makes other points less

likely

Why train a model from positive samples only?

1. Adversarial Robustness: If the input X is not from the training
distribution P(X), refuse classification

2. Detecting Data Shift: if P(X) shifted over time, retrain the model
3. Outlier Detection: detect abnormalities in observed data
4. “Learned” data priors: improved image synthesis or structure in

segmentation maps

Background: change of variable formula

U[0, 1]

U[1, 3] P(T(0.5)) =
= P(2) = 0.5

P(0.5) = 1

T(x) = 2x + 1

Background: change of variable formula

p(x) dx = p(y) dy

p(y) = p(x) det | (dT-1(y)/dy) |

log p(y) = log p(x) + log det | (dT-1(y)/dy) |

Background: change of variable formula

U[0, 1]

U[1, 3] P(T(0.5)) =
= P(2) = 0.5

P(0.5) = 1

T(x) = 2x + 1
T-1(y) = y/2 - ½
dT-1(y)/dy = ½

pY(y) = pX(T-1(y)) * det | (dT-1(y)/dy) |
pY(y) = I[0 < (y/2 - ½) < 1] * ½
 = I[1 < y < 3] * ½

Normalizing flows for density estimation

like shuffling a sand castle
- we move sand around to
increase the amount of
send near data points, but
the total amount of the
sand stays constant

Normalizing flows for density estimation

P(T(x))

PA(x; T) = P(T(x)) * det | ∇ T(x) | * Vol(B(x))

Vol(T(B(x))) = det |∇ T(x)| *
B(x)

B(x)

∇
T(x)

T(x)

B(x)

T(x)

Vol(T(B(x)))

let’s solve the problem “backwards”

Normalizing flows for density estimation

PA(x; F) = P(T(x)) * det | ∇ T(x) | * Vol(T(x))

B(x)

∇
T(x)

T(x)

T-1(x)

Low
probability
areas are

“stretches”

Vol(T(B(x))) = det |∇ T(x)| *
B(x)

In order to define a normalizing flow model we need
1. A one-to-one mapping F(x,𝛉): Rn →Rn

2. F-1(x,𝛉)
3. det[Jac F(x,𝛉)]

to learn more complex
distributions, apply
multiple flows in a row

Real Non-Volume Preserving Flows (R-NVP)

 “affine coupling”

“Density estimation using Real NVP” by Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio

det

z

1:k k+1:n

y(k+1:n)

sigma(1:k)

mu(1:k)

y(1:k)

Real Non-Volume Preserving Flows (R-NVP)

Real Non-Volume Preserving Flows (R-NVP)

Real Non-Volume Preserving Flows (R-NVP)

“squeeze”checkerboard swap

Real Non-Volume Preserving Flows (R-NVP)

Glow: Generative Flow with
Invertible 1x1 Convolutions

(H, W, 3)

(H/2, W/2, 12)

(H/2, W/2, 12)

[(H/2, W/2, 6),
 (H/2, W/2, 6)]

(H/2, W/2, 6)

(H/4, W/4, 24)

...

[(H/4, W/4, 12),
 (H/4, W/4, 12)]

(H/2^k,
 W/2^k,
 3 * 2^k)

concat
(H/2^k,
 W/2^k,
 3 * 4^k)

= very deep RealNVP
+ invertible 1x1 conv instead of swap
+ multiscale features

Glow: Generative Flow with
Invertible 1x1 Convolutions

(H, W, 3)

(H/2, W/2, 12)

(H/2, W/2, 12)

[(H/2, W/2, 6),
 (H/2, W/2, 6)]

(H/2, W/2, 6)

(H/4, W/4, 24)

...

[(H/4, W/4, 12),
 (H/4, W/4, 12)]

(H/2^k,
 W/2^k,
 3 * 2^k)

concat
(H/2^k,
 W/2^k,
 3 * 4^k)

= very deep R-NVP
+ invertible 1x1 conv instead of swap
+ multiscale features

Neural ODE and FFJORD

x(t0) = x0
x’(t) = f(x(t))
x(t1) = ?

What if we use an
explicit method
with fixed step
size?

Neural ODE and FFJORD

x(t0) = x0
x’(t) = f(x(t))
x(t1) = ?

If we use a
“proper solver”,
we get adaptive
step size.

Neural ODE and FFJORD

impossible!

x(t0) = x0
x’(t) = f(x(t))
x(t1) = ?

If we use a
“proper solver”,
we get adaptive
step size.

f(x)

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

Neural ODE and FFJORD

“Do Deep Generative Models Know What They Don't Know?”, ICLR’19

If model PA(x) is trained on A then
for many datasets B

PA(B) > PA(A)

which is quite counter-intuitive …

and we never see anything like B
if we sample from P(A) ..

High likelihood of X does not mean that X is likely!

- the probability of point being in set A is low

- but the mean likelihood of points from this set is high

Final takeaways

1. GANs can help to learn and use the structure of the output domain
2. Normalizing Flows enable density estimation in higher dimensions

