Lecture 15: Unsupervised Deep Learning (III)

Applications of Generative Models; Normalizing Flows

Outline

1. Some applications of convolutional autoencoders and GAN

- a. Image-to-Image Translation with Conditional Adversarial Nets
- b. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows

- a. Change of variable formula
- b. Planar and radial flows
- c. Real NVP
- d. GLOW
- e. FFJORD
- f. Likelihood vs probability

Recap: GANs

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2) A: These losses assume that multiple outputs are independent.

 $Y_i = f(X, theta) + e_i \quad e_i \sim N(0, I) \implies L2 \text{ loss}$

Figure 2: Training a conditional GAN to map edges \rightarrow photo. The discriminator, D, learns to classify between fake (synthesized by the generator) and real {edge, photo} tuples. The generator, G, learns to fool the discriminator. Unlike an unconditional GAN, both the generator and discriminator observe the input edge map.

Takeaway:

if the output domain has some structure (i.e. an image) adversarial losses force the model to follow that structure

Takeaway:

if the output domain has some structure (i.e. an image) adversarial losses force the model to follow that structure

X Y

plain regression model is encouraged to "interpolate" outputs if uncertain

adversarial losses explicitly penalise outputs that look "too different from outputs in the training set"

Figure 2: *Paired* training data (left) consists of training examples $\{x_i, y_i\}_{i=1}^N$, where the correspondence between x_i and y_i exists [22]. We instead consider *unpaired* training data (right), consisting of a source set $\{x_i\}_{i=1}^N$ ($x_i \in X$) and a target set $\{y_j\}_{j=1}$ ($y_j \in Y$), with no information provided as to which x_i matches which y_j .

winter Yosemite \rightarrow summer Yosemite

summer Yosemite \rightarrow winter Yosemite

Takeaway:

adversarial losses enable discovery of latent correspondances in the structure of two datasets

original

manipulated

We trained a **disentangled autoencoder**: we **split** the encoded vector into **two parts** and **force** one part to represent the attribute we manipulate (mouth) and other attributes (hair, mic, ...).

all other mouth attribute disentangled embeddings G shared encoder

How?

We combined **autoencoder** and **cycle losses** on both domains ...

.. with **supervised losses** on synthetic data ...

 b_3

 b_2

 b_1

... with GAN losses ...

... and **compositional constraint losses** to ensure that all components are used.

Takeaway:

adversarial losses enable "forcing" the model to store information necessary for reconstructing specific "aspects" of the input image at specific dimensions of the latent code

Outline

1. Some applications of convolutional autoencoders and GAN

- a. Image-to-Image Translation with Conditional Adversarial Nets
- b. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows

- a. Change of variable formula
- b. Planar and radial flows
- c. Real NVP
- d. GLOW
- e. FFJORD
- f. Likelihood vs probability

How to train a data model from positive samples only?

If we trained a neural network $f(x; \theta)$ to have high values at our training points x_i , it could just shift everything upwards.

We could train a GAN to generate "negative" samples, but the whole procedure becomes fragile.

We could use a model with a "fixed budget", i.e. an autoencoder (# points it can "remember") or a density models (integrates to one).

Why train a model from positive samples only?

- 1. Adversarial Robustness: If the input X is not from the training distribution P(X), refuse classification
- 2. **Detecting Data Shift:** if P(X) shifted over time, retrain the model
- 3. **Outlier Detection:** detect abnormalities in observed data
- 4. **"Learned" data priors:** improved image synthesis or structure in segmentation maps

Background: change of variable formula

 $\log p(y) = \log p(x) + \log \det | (dT^{-1}(y)/dy) |$

p(y) = p(x) **det** | (**dT**⁻¹(y)/dy) |

p(x) dx = p(y) dy

Background: change of variable formula

Background: change of variable formula

y

х

Normalizing flows for density estimation

like shuffling a sand castle - we move sand around to increase the amount of send near data points, but the total amount of the sand stays constant

Normalizing flows for density estimation

Normalizing flows for density estimation

"stretches"

In order to define a normalizing flow model we need

- 1. A **one-to-one** mapping $F(x, \theta)$: $\mathbb{R}^n \to \mathbb{R}^n$
- 2. $F^{-1}(x, \theta)$
- 3. det[Jac F(x, θ)]

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

Planar Flow

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^T \mathbf{z} + b), \tag{4}$$

with $\mathbf{u}, \mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ and h an element-wise non-linearity. Let $\psi(\mathbf{z}) = h'(\mathbf{w}^T \mathbf{z} + b)\mathbf{w}$. The determinant can be easily computed as

$$\left|\det\frac{\partial f}{\partial \mathbf{z}}\right| = \left|1 + \mathbf{u}^T \psi(\mathbf{z})\right|.$$
(5)

We can think of it as slicing the z-space with straight lines (or hyperplanes), where each line contracts or expands the space around it, see figure 1.

Radial Flow

$$f(\mathbf{z}) = \mathbf{z} + \beta h(\alpha, r)(\mathbf{z} - \mathbf{z}_0), \tag{6}$$

with $r = \|\mathbf{z} - \mathbf{z}_0\|_2$, $h(\alpha, r) = \frac{1}{\alpha + r}$ and parameters $\mathbf{z}_0 \in \mathbb{R}^d, \alpha \in \mathbb{R}_+$ and $\beta \in \mathbb{R}$.

$$\mathbf{z}_K = f_K \circ \cdots \circ f_1(\mathbf{z}_0), \quad \mathbf{z}_0 \sim q_0(\mathbf{z}_0), \ \mathbf{z}_K \sim q_K(\mathbf{z}_K) = q_0(\mathbf{z}_0) \prod_{k=1}^K \left| \det rac{\partial f_k}{\partial \mathbf{z}_{k-1}}
ight|^{-1}.$$

to learn more complex distributions, apply multiple flows in a row

$$\mathbf{y}_{1:k} = \mathbf{z}_{1:k},$$

$$\mathbf{y}_{k+1:d} = \mathbf{z}_{k+1:d} \circ \sigma(\mathbf{z}_{1:k}) + \mu(\mathbf{z}_{1:k}).$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \quad \det \frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \prod_{i=1}^{d-k} \sigma_i(\mathbf{z}_{1:k}).$$

$$\overset{\text{(affine coupling)}}{=}$$

$$\overset{\text{(affine coupling)}}{=}$$

$$\overset{\text{(affine coupling)}}{=}$$

"Density estimation using Real NVP" by Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio

checkerboard swap

Glow: Generative Flow with Invertible 1x1 Convolutions

very deep RealNVPinvertible 1x1 conv instead of swapmultiscale features

Glow: Generative Flow with Invertible 1x1 Convolutions

= very deep R-NVP+ invertible 1x1 conv instead of swap+ multiscale features

 $x(t_0) = x_0$ x'(t) = f(x(t)) x(t_1) = ?

What if we use an **explicit method** with **fixed** step size?

 $x(t_0) = x_0$ x'(t) = f(x(t)) x(t_1) = ?

If we use a "proper solver", we get adaptive step size.

 $x(t_0) = x_0$ x'(t) = f(x(t)) x(t_1) = ?

If we use a "proper solver", we get adaptive step size.

impossible!

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

"Do Deep Generative Models Know What They Don't Know?", ICLR'19

a) Train on FashionMNIST, Test on MNIST

(c) Train on CelebA, Test on SVHN

(b) Train on CIFAR-10, Test on SVHN

(d) Train on ImageNet, Test on CIFAR-10 / CIFAR-100 / SVHN

If model $P_A(x)$ is **trained** on A then for many datasets B

 $\mathsf{P}_{\mathsf{A}}(\mathbf{B}) > \mathsf{P}_{\mathsf{A}}(\mathbf{A})$

which is quite counter-intuitive ...

and we never see anything like B if we sample from P(A) ..

High likelihood of X does not mean that X is likely!

$$egin{aligned} A &= \{y \in \mathbb{R}^{100} \mid ||y|| \leq arepsilon \} \ P(A) &= \int_A \mathcal{N}_{100}(x;0,I) dx \end{aligned}$$

- the **probability** of point being in set A is **low**

$$B = \{x_i \in \mathbb{R}^{100} \mid ||x|| \leq arepsilon\}_{i=0}^N$$

 $\mathcal{L}(B) = rac{1}{N} \sum_{x_i \in B} \log \mathcal{N}_{100}(x;0,I)$

- but the mean likelihood of points from this set is high

Final takeaways

- 1. GANs can help to learn and use the structure of the output domain
- 2. Normalizing Flows enable density estimation in higher dimensions