
Lecture 15:
Unsupervised Deep Learning (III)
Applications of Generative Models; Normalizing Flows



Outline
1. Some applications of convolutional autoencoders and GAN

a. Image-to-Image Translation with Conditional Adversarial Nets
b. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
c. PuppetGAN: Cross-Domain Image Manipulation by Demonstration

2. Normalizing Flows
a. Change of variable formula
b. Planar and radial flows
c. Real NVP
d. GLOW
e. FFJORD
f. Likelihood vs probability
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train D “to catch” G



Recap: GANs
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Example Application 1: 
Improving outputs of supervised image-to-image models  

“Image-to-Image Translation with Conditional Adversarial Nets” [Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros]

Q: This is a regression model: why not just use a simple supervised loss? (L1, L2)
A: These losses assume that multiple outputs are independent.

Yi = f(X, theta) + ei    ei ~ N(0, I)    =>    L2 loss
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Example Application 1: 
Improving outputs of supervised image-to-image models  

Takeaway: 

if the output domain has some structure (i.e. an image)
adversarial losses force the model to follow that structure

X      Y

plain regression model is encouraged 
to “interpolate” outputs if uncertain

adversarial losses explicitly penalise 
outputs that look “too different from 

outputs in the training set”
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Example Application 2: 
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“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

GAN losses

Supervised 
losses
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Example Application 2: 
Enabling unsupervised image-to-image training  

“Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” [Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros]

Takeaway: 

adversarial losses enable discovery of latent 
correspondances in the structure of two datasets



Example Application 3: 
Cross-domain attribute manipulation  

mouth rest

mouth rest

adapt

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



mouth rest

original

manipulated

Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]



https://docs.google.com/file/d/1t6QFkqWAS6RcFhB_ac5I6YoTbbR8SdFC/preview
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all other
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Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

We trained a disentangled autoencoder: 
we split the encoded vector into two parts 
and force one part to represent the attribute 
we manipulate (mouth) and other attributes 
(hair, mic, …).

How?
real 
decoder

synthetic 
decoder

shared 
encoder



Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

We combined autoencoder 
and cycle losses on both 
domains ...



Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

.. with supervised losses on 
synthetic data ...



Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

... with GAN losses …     ….

GAN GAN



Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

... and compositional constraint losses
to ensure that all components are used.

any any



Example Application 3: 
Cross-domain attribute manipulation  

“PuppetGAN: Cross-Domain Image Manipulation by Demonstration” [B. Usman, N. Dufour, K. Saenko, C. Bregler]

Takeaway: 

adversarial losses enable “forcing” the model to store 
information necessary for reconstructing 

specific “aspects” of the input image
at specific dimensions of the latent code
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we learn to compute 
model(x, theta) = P(x | theta)

we learn to sample
x’ ~ model(theta)

choose theta such that the 
observed dataset could have been 
generated by model(theta)



How to train a data model from positive samples only?

If we trained a neural network f(x; θ) to have high 
values at our training points xi, it could just shift 
everything upwards. 

what we want

what we have

what we want

what we have We could train a GAN to generate “negative” 
samples, but the whole procedure becomes fragile.

We could use a model with a “fixed budget”, i.e. 
an autoencoder (# points it can “remember”) or 
a density models (integrates to one).

what we have

Has to integrate to 1 for any theta => 
automatically makes other points less 

likely



Why train a model from positive samples only?

1. Adversarial Robustness: If the input X is not from the training 
distribution P(X), refuse classification

2. Detecting Data Shift: if P(X) shifted over time, retrain the model
3. Outlier Detection: detect abnormalities in observed data
4. “Learned” data priors: improved image synthesis or structure in 

segmentation maps
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= P(2) = 0.5
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Background: change of variable formula

p(x) dx = p(y) dy

p(y) = p(x) det | (dT-1(y)/dy) |

log p(y) = log p(x) + log det | (dT-1(y)/dy) |



Background: change of variable formula

U[0, 1]

U[1, 3] P(T(0.5)) = 
= P(2) = 0.5

P(0.5) = 1

T(x) = 2x + 1
T-1(y) = y/2 - ½
dT-1(y)/dy =  ½

pY(y) = pX(T-1(y)) * det | (dT-1(y)/dy) |
pY(y)  = I[0 < (y/2 - ½) < 1] * ½ 
          = I[1 < y < 3] * ½ 



Normalizing flows for density estimation

like shuffling a sand castle
- we move sand around to 
increase the amount of 
send near data points, but 
the total amount of the 
sand stays constant



Normalizing flows for density estimation

P(T(x))

PA(x; T) = P(T(x)) * det | ∇ T(x) | * Vol( B(x) )

Vol( T(B(x)) ) = det |∇ T(x)| * 
B(x)

B(x)

∇ 
T(x)

T(x)

B(x)

T(x)

Vol( T(B(x)) )

let’s solve the problem “backwards” 



Normalizing flows for density estimation

PA(x; F) = P(T(x)) * det | ∇ T(x) | * Vol( T(x) )

B(x)

∇ 
T(x)

T(x)

T-1(x)

Low 
probability 
areas are 

“stretches”

Vol( T(B(x)) ) = det |∇ T(x)| * 
B(x)



In order to define a normalizing flow model we need
1. A one-to-one mapping F(x,𝛉): Rn →Rn

2. F-1(x,𝛉)
3. det[Jac F(x,𝛉)]





to learn more complex 
distributions, apply 
multiple flows in a row



Real Non-Volume Preserving Flows (R-NVP)

       “affine coupling”

“Density estimation using Real NVP” by Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio

det

z

1:k k+1:n

y(k+1:n)

sigma(1:k)

mu(1:k)

y(1:k)



Real Non-Volume Preserving Flows (R-NVP)
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Real Non-Volume Preserving Flows (R-NVP)

“squeeze”checkerboard swap



Real Non-Volume Preserving Flows (R-NVP)



Glow: Generative Flow with 
Invertible 1x1 Convolutions

(H, W, 3)

(H/2, W/2, 12)

(H/2, W/2, 12)

[(H/2, W/2, 6),
 (H/2, W/2, 6)]

(H/2, W/2, 6)

(H/4, W/4, 24)

...

[(H/4, W/4, 12),
 (H/4, W/4, 12)]

(H/2^k, 
 W/2^k, 
 3 * 2^k)

concat
(H/2^k, 
 W/2^k, 
 3 * 4^k)

= very deep RealNVP 
+ invertible 1x1 conv instead of swap 
+ multiscale features
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Neural ODE and FFJORD

x(t0) = x0
x’(t) = f(x(t))
x(t1) = ?

What if we use an 
explicit method 
with fixed step 
size?
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Neural ODE and FFJORD

impossible!

x(t0) = x0
x’(t) = f(x(t))
x(t1) = ?

If we use a 
“proper solver”,
we get adaptive 
step size.



f(x)

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

Neural ODE and FFJORD



“Do Deep Generative Models Know What They Don't Know?”, ICLR’19

If model PA(x) is trained on A then 
for many datasets B

PA(B) > PA(A)
 

which is quite counter-intuitive …

and we never see anything like B 
if we sample from P(A) ..



High likelihood of X does not mean that X is likely!

- the probability of point being in set A is low

- but the mean likelihood of points from this set is high



Final takeaways

1. GANs can help to learn and use the structure of the output domain
2. Normalizing Flows enable density estimation in higher dimensions


